@article{RichterWassermannZimmeretal.2004, author = {Richter, Gudrun and Wassermann, J{\"u}rgen and Zimmer, Martin and Ohrnberger, Matthias}, title = {Correlation of seismic activity and fumarole temperature at the Mt. Merapi volcano (Indonesia) in 2000}, issn = {0377-0273}, doi = {10.1016/j.jvolgeores.2004.03.006}, year = {2004}, abstract = {In this paper we present densely sampled fumarole temperature data, recorded continuously at a high-temperature fumarole of Mt. Merapi volcano (Indonesia). These temperature time series are correlated with continuous records of rainfall and seismic waveform data collected at the Indonesian - German multi-parameter monitoring network. The correlation analysis of fumarole temperature and precipitation data shows a clear influence of tropical rain events on fumarole temperature. In addition, there is some evidence that rainfall may influence seismicity rates, indicating interaction of meteoric water with the volcanic system. Knowledge about such interactions is important, as lava dome instabilities caused by heavy-precipitation events may result in pyroclastic flows. Apart from the strong external influences on fumarole temperature and seismicity rate, which may conceal smaller signals caused by volcanic degassing processes, the analysis of fumarole temperature and seismic data indicates a statistically significant correlation between a certain type of seismic activity and an increase in fumarole temperature. This certain type of seismic activity consists of a seismic cluster of several high-frequency transients and an ultra-long-period signal (< 0.002 Hz), which are best observed using a broadband seismometer deployed at a distance of 600 m from the active lava dome. The corresponding change in fumarole temperature starts a few minutes after the ultra-long-period signal and simultaneously with the high-frequency seismic cluster. The change in fumarole temperature, an increase of 5 degreesC on average, resembles a smoothed step. Fifty-four occurrences of simultaneous high-frequency seismic cluster, ultra-long period signal and increase of fumarole temperature have been identified in the data set from August 2000 to January 2001. The observed signals appear to correspond to degassing processes in the summit region of Mt. Merapi. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{WebsterThomasFoersteretal.2004, author = {Webster, J. D. and Thomas, R. and F{\"o}rster, Hans-J{\"u}rgen and Seltmann, R. and Tappen, C.}, title = {Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany}, issn = {0026-4598}, year = {2004}, abstract = {We remelted and analyzed crystallized silicate melt inclusions in quartz from a porphyritic albitezinnwaldite microgranite dike to determine the composition of highly evolved, shallowly intruded, Li- and F-rich granitic magma and to investigate the role of crystal fractionation and aqueous fluid exsolution in causing the extreme extent of magma differentiation. This dike is intimately associated with tin- and tungsten-mineralized granites of Zinnwald, Erzgebirge, Germany. Prior research on Zinnwald granite geochemistry was limited by the effects of strong and pervasive greisenization and alkali-feldspar metasomatism of the rocks. These melt inclusions, however, provide important new constraints on magmatic and mineralizing processes in Zinnwald magmas. The mildly peraluminous granitic melt inclusions are strongly depleted in CAFEMIC constituents (e.g., CaO, FeO, MgO, TiO2), highly enriched in lithophile trace elements, and highly but variably enriched in F and Cl. The melt inclusions contain up to several thousand ppm Cl and nearly 3 wt\% F, on average; several inclusions contain more than 5 wt\% F. The melt inclusions are geochemically similar to the corresponding whole-rock sample, except that the former contain much more F and less CaO, FeO, Zr, Nb, Sr, and Ba. The Sr and Ba abundances are very low implying the melt inclusions represent magma that was more evolved than that represented by the bulk rock. Relationships involving melt constituents reflect increasing lithophile-element and halogen abundances in residual melt with progressive magma differentiation. Modeling demonstrates that differentiation was dominated by crystal fractionation involving quartz and feldspar and significant quantities of topaz and F-rich zinnwaldite. The computed abundances of the latter phases greatly exceed their abundances in the rocks, suggesting that the residual melt was separated physically from phenocrysts during magma movement and evolution. Interactions of aqueous fluids with silicate melt were also critical to magma evolution. To better understand the role of halogen-charged, aqueous fluids in magmatic differentiation and in subsequent mineralization and metasomatism of the Zinnwald granites, Cl-partitioning experiments were conducted with a F-enriched silicate melt and aqueous fluids at 2,000 bar (200 MPa). The results of the experimentally determined partition coefficients for Cl and F, the compositions of fluid inclusions in quartz and other phenocrysts, and associated geochemical modeling point to an important role of magmatic-hydrothermal fluids in influencing magma geochemistry and evolution. The exsolution of halogen-charged fluids from the Li- and F- enriched Zinnwald granitic magma modified the Cl, alkali, and F contents of the residual melt, and may have also sequestered Li, Sri, and W from the melt. Many of these fluids contained strongly elevated F concentrations that were equivalent to or greater than their Cl abundances. The exsolution of F-, Cl-, Li-, +/- W- and Sn-bearing hydrothermal fluids from Zinnwald granite magmas was important in effecting the greisenizing and alkali-feldspathizing metasomatism of the granites and the concomitant mineralization}, language = {en} } @article{WilkePartzschFarges2004, author = {Wilke, Max and Partzsch, G. M. and Farges, Francois}, title = {XAFS of iron in silicate melt at high temperature}, issn = {0024-4937}, year = {2004}, language = {en} } @article{WilkePartzschBernhardtetal.2004, author = {Wilke, Max and Partzsch, G. M. and Bernhardt, Rita and Lattard, D.}, title = {Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge}, issn = {0009-2541}, year = {2004}, abstract = {Fe K-edge X-ray absorption near edge structure (XANES) and Mossbauer spectra were collected on synthetic glasses of basaltic composition and of glasses on the sodium oxide-silica binary to establish a relation between the pre- edge of the XANES at the K-edge and the Fe oxidation state of depolymerised glasses. Charges of sample material were equilibrated at ambient pressure, superliquidus temperatures and oxygen fugacities that were varied over a range of about 15 orders of magnitude. Most experiments were carried out in gas-flow furnaces, either with pure oxygen, air, or different CO/CO2 mixtures. For the most reduced conditions, the samples charges were enclosed together with a pellet of the IQF oxygen buffer in an evacuated silica glass ampoule. Fe3+/SigmaFe x 100 of the samples determined by Mossbauer spectroscopy range between 0\% and 100\%. Position and intensity of the pre-edge centroid position vary strongly depending on the Fe oxidation state. The pre-edge centroid position and the Fe oxidation state determined by Mossbauer spectroscopy are nonlinearly related and have been fitted by a quadratic polynomial. Alternatively, the ratio of intensities measured at positions sensitive to Fe2+ and Fe3+, respectively, provides an even more sensitive method. Pre- edge intensities of the sample suite indicate average Fe co-ordination between 4 and 6 for all samples regardless of oxidation state. A potential application of the calibration given here opens the possibility of determining Fe oxidation state in glasses of similar compositions with high spatial resolution by use of a Micro-XANES setup (e.g., glass inclusions in natural minerals). (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{ScherbaumCottonSmit2004, author = {Scherbaum, Frank and Cotton, Fabrice Pierre and Smit, P.}, title = {On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity : the case of rock motion}, issn = {0037-1106}, year = {2004}, abstract = {The use of ground-motion-prediction equations to estimate ground shaking has become a very popular approach for seismic-hazard assessment, especially in the framework of a logic-tree approach. Owing to the large number of existing published ground-motion models, however, the selection and ranking of appropriate models for a particular target area often pose serious practical problems. Here we show how observed around-motion records can help to guide this process in a systematic and comprehensible way. A key element in this context is a new, likelihood based, goodness-of-fit measure that has the property not only to quantify the model fit but also to measure in some degree how well the underlying statistical model assumptions are met. By design, this measure naturally scales between 0 and 1, with a value of 0.5 for a situation in which the model perfectly matches the sample distribution both in terms of mean and standard deviation. We have used it in combination with other goodness-of-fit measures to derive a simple classification scheme to quantify how well a candidate ground-rnotion-prediction equation models a particular set of observed-response spectra. This scheme is demonstrated to perform well in recognizing a number of popular ground-motion models from their rock-site- recording, subsets. This indicates its potential for aiding the assignment of logic-tree weights in a consistent and reproducible way. We have applied our scheme to the border region of France, Germany, and Switzerland where the M-w 4.8 St. Die earthquake of 22 February 2003 in eastern France recently provided a small set of observed-response spectra. These records are best modeled by the ground-motion-prediction equation of Berge-Thierry et al. (2003), which is based on the analysis of predominantly European data. The fact that the Swiss model of Bay et al. (2003) is not able to model the observed records in an acceptable way may indicate general problems arising from the use of weak-motion data for strong-motion prediction}, language = {en} } @article{WilmkingIbendorf2004, author = {Wilmking, M. and Ibendorf, J.}, title = {An early tree-line experiment by a wilderness advocate : Bob Marshall's legacy in the Brooks Range, Alaska}, issn = {0004-0843}, year = {2004}, language = {en} } @article{ThiedeBookhagenArrowsmithetal.2004, author = {Thiede, Rasmus Christoph and Bookhagen, Bodo and Arrowsmith, J. Ram{\´o}n and Sobel, Edward and Strecker, Manfred}, title = {Climatic control on rapid exhumation along the Southern Himalayan Front}, issn = {0012-821X}, year = {2004}, abstract = {Along the Southern Himalayan Front (SHF), areas with concentrated precipitation coincide with rapid exhumation, as indicated by young mineral cooling ages. Twenty new, young ( < 1-5 Ma) apatite fission track (AFT) ages have been obtained from the Himalayan Crystalline Core along the Sutlej Valley, NW India. The AFT ages correlate with elevation, but show no spatial relationship to tectonic structures, such as the Main Central Thrust or the Southern Tibetan Fault System. Monsoonal precipitation in this region exerts a strong influence on erosional surface processes. Fluvial erosional unloading along the SHF is focused on high mountainous areas, where the orographic barrier forces out > 80\% of the annual precipitation. AFT cooling ages reveal a coincidence between rapid erosion and exhumation that is focused in a similar to 50-70-km-wide sector of the Himalaya, rather than encompassing the entire orogen. Assuming simplified constant exhumation rates, the rocks of two age vs. elevation transects were exhumed at similar to 1.4 +/- 0.2 and similar to 1.1 +/- 0.4 mm/a with an average cooling rate of similar to 40-50degreesC/Ma during Pliocene-Quarternary time. Following other recently published hypotheses regarding the relation between tectonics and climate in the Himalaya, we suggest that this concentrated loss of material was accommodated by motion along a back-stepping thrust to the south and a normal fault zone to the north as part of an extruding wedge. Climatically controlled erosional processes focus on this wedge and suggest that climatically controlled surface processes determine tectonic deformation in the internal part of the Himalaya. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{ZiemannSchmidtMirwald2004, author = {Ziemann, Martin Andreas and Schmidt, Christian and Mirwald, Peter W.}, title = {Raman spectroscopic study of the liquid-liquid transition in water}, issn = {0024-4937}, year = {2004}, language = {en} } @article{HinzenWeberScherbaum2004, author = {Hinzen, K. G. and Weber, B. and Scherbaum, Frank}, title = {On the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the Lower Rhine Embayment, Germany}, issn = {1363-2469}, year = {2004}, abstract = {In recent years, H/V measurements have been increasingly used to map the thickness of sediment fill in sedimentary basins in the context of seismic hazard assessment. This parameter is believed to be an important proxy for the site effects in sedimentary basins (e.g. in the Los Angeles basin). Here we present the results of a test using this approach across an active normal fault in a structurally well known situation. Measurements on a 50 km long profile with 1 km station spacing clearly show a change in the frequency of the fundamental peak of H/V ratios with increasing thickness of the sediment layer in the eastern part of the Lower Rhine Embayment. Subsequently, a section of 10 km length across the Erft-Sprung system, a normal fault with ca. 750 m vertical offset, was measured with a station distance of 100 m. Frequencies of the first and second peaks and the first trough in the H/V spectra are used in a simple resonance model to estimate depths of the bedrock. While the frequency of the first peak shows a large scatter for sediment depths larger than ca. 500 m, the frequency of the first trough follows the changing thickness of the sediments across the fault. The lateral resolution is in the range of the station distance of 100 m. A power law for the depth dependence of the S-wave velocity derived from down hole measurements in an earlier study [Budny, 1984] and power laws inverted from dispersion analysis of micro array measurements [Scherbaum et al., 2002] agree with the results from the H/V ratios of this study}, language = {en} } @article{HetzelTaoStokesetal.2004, author = {Hetzel, Ralf and Tao, M. X. and Stokes, S. and Niedermann, Samuel and Ivy-Ochs, Susan and Gao, B. and Strecker, Manfred and Kubik, Peter W.}, title = {Late Pleistocene / Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau}, issn = {0278-7407}, year = {2004}, abstract = {We derive a slip rate for a thrust at the central Qilian Shan mountain front by combining structural investigations, satellite imagery, topographic profiling, luminescence dating, and Be-10 exposure dating. The seismically active Zhangye thrust transects late Pleistocene alluvial fan deposits and forms a prominent north facing scarp. The fault consists of two segments that differ in orientation, scarp height, and age. A series of loess-covered terraces records the uplift history of the western thrust segment. Loess accumulation on all terraces started at 8.5 +/- 1.5 kyr and postdates terrace formation. Gravels from the highest terrace yielded a Be-10 exposure age of 90 +/- 11 kyr, which dates the onset of faulting. With a displacement of 55-60 m derived from fault scarp profiles, this yields a vertical slip rate of 0.64 +/- 0.08 mm yr(-1). Along the eastern thrust segment, three Be-10 ages from the uplifted alluvial fan constrain that faulting started at similar to31 +/- 5 kyr. Together with a displacement of 25-30 m this leads to a vertical faulting rate of 0.88 +/- 0.16 mm yr(-1). A dip estimate of 40degrees to 60degrees for the fault plane combined with lower and upper limits of similar to0.6 and similar to0.9 mm yr(-1) for the vertical slip rate gives minimum and maximum horizontal shortening rates of 0.4 and 1.1 mm yr(-1) across the Zhangye thrust. Our results are consistent with geologic and GPS constraints, which suggest that NNE directed shortening across the northeastern Tibetan Plateau is distributed on several active faults with a total shortening rate of 4 to 10 mm yr(-1)}, language = {en} }