@misc{ElbertLaschewskyRingsdorf1985, author = {Elbert, R. and Laschewsky, Andr{\´e} and Ringsdorf, H.}, title = {Hydrophilic spacer groups in polymerizable lipids: formation of biomembrane models from bulk polymerized lipids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17361}, year = {1985}, abstract = {A variety of polymerizable lipids containing a hydrophilic spacer group between the reactive group and the main amphiphilic structure have been synthesized. They were investigated in monolayers, liposomes, and multilayers. When the spacer concept was used, efficient decoupling of the motions of the polymeric chain and the amphiphilic side groups is achieved. Thus, the often found loss of the important fluid phases by polymerization is avoided. Polymeric monolayers of the spacer lipid, prepared either by polymerization in the monolayer or by spreading of prepolymerized lipid, exhibit nearly identical surface pressure-area diagrams. Most distinctly, the successful decoupling of the motions of the polymer main chain and the membrane forming amphiphilic side groups is demonstrated by the self-organization of bulk polymerized spacer lipids to polymeric liposomes. In addition, spacer lipids are able to build polymeric Langmuir-Blodgett multilayers. The decoupling of the polymer main chain and the membrane-forming amphiphilic side groups enables the deposition of already polymeric monolayers onto supports to form defined multilayers. If, alternatively, monomeric monolayers are deposited and polymerized on the support, defects in the layers due to structural changes during the polymerization are avoided by the flexible spacer group.}, language = {en} } @misc{LaschewskyRingsdorfSchmidt1985, author = {Laschewsky, Andr{\´e} and Ringsdorf, H. and Schmidt, G.}, title = {Polymerization of hydrocarbon and fluorocarbon amphiphiles in Langmuir-Blodgett multilayers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17096}, year = {1985}, abstract = {Langmuir-Blodgett multilayers of polymerizable carboxylic acids with hydrocarbon or fluorocarbon chains were prepared. The multilayers were polymerized by UV light and the reactions were studied by UV/visible spectroscopy. The polyreactions strongly influence the multilayer structures which were investigated by X-ray small-angle scattering and scanning electron microscopy. The spreading behaviour of the monomers, the preparation of multilayers, their reactivities in multilayers and structural effects caused by the polyreactions are discussed with regard to the hydrophilic head groups, the polymerizable groups and the hydrophobic chains.}, language = {en} }