@article{SarauliXuDietzeletal.2013, author = {Sarauli, David and Xu, Chenggang and Dietzel, Birgit and Schulz, Burkhard and Lisdat, Fred}, title = {Differently substituted sulfonated polyanilines - the role of polymer compositions in electron transfer with pyrroloquinoline quinone-dependent glucose dehydrogenase}, series = {Acta biomaterialia}, volume = {9}, journal = {Acta biomaterialia}, number = {9}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2013.06.008}, pages = {8290 -- 8298}, year = {2013}, abstract = {Sulfonated polyanilines have become promising building blocks in the construction of biosensors, and therefore we use here differently substituted polymer forms to investigate the role of their structural composition and properties in achieving a direct electron transfer with the redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). To this end, new copolymers containing different ratios of 2-methoxyaniline-5-sulfonic acid (MAS), 3-aminobenzenesulfonic acid (ABS) and 3-aminobenzoic acid (AB) units have been chemically synthesized. All polymers have been studied with respect to their ability to react directly with PQQ-GDH. This interaction has been monitored initially in solution, and subsequently on electrode surfaces. The results show that only copolymers with MAS and aniline units can directly react with PQQ-GDH in solution; the background can be mainly ascribed to the emeraldine salt redox state of the polymer, allowing rather easy reduction. However, when polymers and the enzyme are immobilized on the surface of carbon nanotube-containing electrodes, direct bioelectrocatalysis is also feasible in the case of copolymers composed of ABS/AB and MAS/AB units, existing initially in pernigraniline base form. This verifies that a productive interaction of the enzyme with differently substituted polymers is feasible when the electrode potential can be used to drive the reaction towards the oxidation of the substrate-reduced enzyme. These results clearly demonstrate that enzyme electrodes based on sulfonated polyanilines and direct bioelectrocatalysis can be successfully constructed.}, language = {en} } @article{BosserdtGajovicEichelmanScheller2013, author = {Bosserdt, Maria and Gajovic-Eichelman, Nenad and Scheller, Frieder W.}, title = {Modulation of direct electron transfer of cytochrome c by use of a molecularly imprinted thin film}, series = {Analytical \& bioanalytical chemistry}, volume = {405}, journal = {Analytical \& bioanalytical chemistry}, number = {20}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-013-7009-8}, pages = {6437 -- 6444}, year = {2013}, abstract = {We describe the preparation of a molecularly imprinted polymer film (MIP) on top of a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold, where the template cytochrome c (cyt c) participates in direct electron transfer (DET) with the underlying electrode. To enable DET, a non-conductive polymer film is electrodeposited from an aqueous solution of scopoletin and cyt c on to the surface of a gold electrode previously modified with MUA. The electroactive surface concentration of cyt c was 0.5 pmol cm(-2). In the absence of the MUA layer, no cyt c DET was observed and the pseudo-peroxidatic activity of the scopoletin-entrapped protein, assessed via oxidation of Ampliflu red in the presence of hydrogen peroxide, was only 30 \% of that for the MIP on MUA. This result indicates that electrostatic adsorption of cyt c by the MUA-SAM substantially increases the surface concentration of cyt c during the electrodeposition step, and is a prerequisite for the productive orientation required for DET. After template removal by treatment with sulfuric acid, rebinding of cyt c to the MUA-MIP-modified electrode occurred with an affinity constant of 100,000 mol(-1) L, a value three times higher than that determined by use of fluorescence titration for the interaction between scopoletin and cyt c in solution. The DET of cyt c in the presence of myoglobin, lysozyme, and bovine serum albumin (BSA) reveals that the MIP layer suppresses the effect of competing proteins.}, language = {en} }