@article{DrewesMoreirasKorup2018, author = {Drewes, Julia and Moreiras, Stella and Korup, Oliver}, title = {Permafrost activity and atmospheric warming in the Argentinian Andes}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {323}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2018.09.005}, pages = {13 -- 24}, year = {2018}, abstract = {Rock glaciers are permafrost or glacial landforms of debris and ice that deform under the influence of gravity. Recent estimates hold that, in the semiarid Chilean Andes for example, active rock glaciers store more water than glaciers. However, little is known about how many rock glaciers might decay because of global warming and how much this decay might contribute to water and sediment release. We investigated an inventory of >6500 rock glaciers in the Argentinian Andes, spanning the climatic gradient from the Desert Andes to cold-temperate Tierra del Fuego. We used active rock glaciers as a diagnostic of permafrost, assuming that the toes mark the 0 degrees C isotherm in climate scenarios for the twenty-first century and their impact on freezing conditions near the rock glacier toes. We find that, under future worst case warming, up to 95\% of rock glaciers in the southern Desert Andes and in the Central Andes will rest in areas above 0 degrees C and that this freezing level might move up more than twice as much (similar to 500 m) as during the entire Holocene (similar to 200 m). Many active rock glaciers are already well below the current freezing level and exemplify how local controls may confound regional prognoses. A Bayesian Multifactor Analysis of Variance further shows that only in the Central Andes are the toes of active rock glaciers credibly higher than those of inactive ones. Elsewhere in the Andes, active and inactive rock glaciers occupy indistinguishable elevation bands, regardless of aspect, the formation mechanism, or shape of rock glaciers. The state of rock glacier activity predicts differences in elevations of toes to 140 m at best so that regional inference of the distribution of discontinuous permafrost from rock-glacier toes cannot be more accurate than this in the Argentinian Andes. We conclude that the Central Andes-where rock glaciers are largest, cover the most area, and have a greater density than glaciers-is likely to experience the most widespread disturbance to the thermal regime of the twenty-first century. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{HuggelClagueKorup2012, author = {Huggel, Christian and Clague, John J. and Korup, Oliver}, title = {Is climate change responsible for changing landslide activity in high mountains?}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {37}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.2223}, pages = {77 -- 91}, year = {2012}, abstract = {Climate change, manifested by an increase in mean, minimum, and maximum temperatures and by more intense rainstorms, is becoming more evident in many regions. An important consequence of these changes may be an increase in landslides in high mountains. More research, however, is necessary to detect changes in landslide magnitude and frequency related to contemporary climate, particularly in alpine regions hosting glaciers, permafrost, and snow. These regions not only are sensitive to changes in both temperature and precipitation, but are also areas in which landslides are ubiquitous even under a stable climate. We analyze a series of catastrophic slope failures that occurred in the mountains of Europe, the Americas, and the Caucasus since the end of the 1990s. We distinguish between rock and ice avalanches, debris flows from de-glaciated areas, and landslides that involve dynamic interactions with glacial and river processes. Analysis of these events indicates several important controls on slope stability in high mountains, including: the non-linear response of firn and ice to warming; three-dimensional warming of subsurface bedrock and its relation to site geology; de-glaciation accompanied by exposure of new sediment; and combined short-term effects of precipitation and temperature. Based on several case studies, we propose that the following mechanisms can significantly alter landslide magnitude and frequency, and thus hazard, under warming conditions: (1) positive feedbacks acting on mass movement processes that after an initial climatic stimulus may evolve independently of climate change; (2) threshold behavior and tipping points in geomorphic systems; (3) storage of sediment and ice involving important lag-time effects.}, language = {en} } @article{KorupGoeruemHayakawa2012, author = {Korup, Oliver and G{\"o}r{\"u}m, Tolga and Hayakawa, Yuichi}, title = {Without power? - Landslide inventories in the face of climate change}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {37}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.2248}, pages = {92 -- 99}, year = {2012}, abstract = {Projected scenarios of climate change involve general predictions about the likely changes to the magnitude and frequency of landslides, particularly as a consequence of altered precipitation and temperature regimes. Whether such landslide response to contemporary or past climate change may be captured in differing scaling statistics of landslide size distributions and the erosion rates derived thereof remains debated. We test this notion with simple Monte Carlo and bootstrap simulations of statistical models commonly used to characterize empirical landslide size distributions. Our results show that significant changes to total volumes contained in such inventories may be masked by statistically indistinguishable scaling parameters, critically depending on, among others, the size of the largest of landslides recorded. Conversely, comparable model parameter values may obscure significant, i.e. more than twofold, changes to landslide occurrence, and thus inferred rates of hillslope denudation and sediment delivery to drainage networks. A time series of some of Earth's largest mass movements reveals clustering near and partly before the last glacial-interglacial transition and a distinct step-over from white noise to temporal clustering around this period. However, elucidating whether this is a distinct signal of first-order climate-change impact on slope stability or simply coincides with a transition from short-term statistical noise to long-term steady-state conditions remains an important research challenge.}, language = {en} }