@article{LiebigSarhanPrietzeletal.2016, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Reinecke, Antje and Koetz, Joachim}, title = {"Green" gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering}, series = {RSC Advances}, volume = {6}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c6ra04808k}, pages = {33561 -- 33568}, year = {2016}, abstract = {The aim of this study was to develop a one-step synthesis of gold nanotriangles (NTs) in the presence of mixed phospholipid vesicles followed by a separation process to isolate purified NTs. Negatively charged vesicles containing AOT and phospholipids, in the absence and presence of additional reducing agents (polyampholytes, polyanions or low molecular weight compounds), were used as a template phase to form anisotropic gold nanoparticles. Upon addition of the gold chloride solution, the nucleation process is initiated and both types of particles, i.e., isotropic spherical and anisotropic gold nanotriangles, are formed simultaneously. As it was not possible to produce monodisperse nanotriangles with such a one-step procedure, the anisotropic nanoparticles needed to be separated from the spherical ones. Therefore, a new type of separation procedure using combined polyelectrolyte/micelle depletion flocculation was successfully applied. As a result of the different purification steps, a green colored aqueous dispersion was obtained containing highly purified, well-defined negatively charged flat nanocrystals with a platelet thickness of 10 nm and an edge length of about 175 nm. The NTs produce promising results in surface-enhanced Raman scattering.}, language = {en} } @misc{LiebigSarhanPrietzeletal.2016, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Reinecke, Antje and Koetz, Joachim}, title = {"Green" gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394430}, pages = {33561 -- 33568}, year = {2016}, abstract = {The aim of this study was to develop a one-step synthesis of gold nanotriangles (NTs) in the presence of mixed phospholipid vesicles followed by a separation process to isolate purified NTs. Negatively charged vesicles containing AOT and phospholipids, in the absence and presence of additional reducing agents (polyampholytes, polyanions or low molecular weight compounds), were used as a template phase to form anisotropic gold nanoparticles. Upon addition of the gold chloride solution, the nucleation process is initiated and both types of particles, i.e., isotropic spherical and anisotropic gold nanotriangles, are formed simultaneously. As it was not possible to produce monodisperse nanotriangles with such a one-step procedure, the anisotropic nanoparticles needed to be separated from the spherical ones. Therefore, a new type of separation procedure using combined polyelectrolyte/micelle depletion flocculation was successfully applied. As a result of the different purification steps, a green colored aqueous dispersion was obtained containing highly purified, well-defined negatively charged flat nanocrystals with a platelet thickness of 10 nm and an edge length of about 175 nm. The NTs produce promising results in surface-enhanced Raman scattering.}, language = {en} } @article{RumschoettelKosmellaPrietzeletal.2016, author = {Rumsch{\"o}ttel, Jens and Kosmella, Sabine and Prietzel, Claudia Christina and Appelhans, Dietmar and Koetz, Joachim}, title = {Change in size, morphology and stability of DNA polyplexes with hyperbranched poly(ethyleneimines) containing bulky maltose units}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {138}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2015.11.061}, pages = {78 -- 85}, year = {2016}, abstract = {Polyplexes between Salmon DNA and non-modified hyperbranched poly(ethyleneimines) of varying molar mass, i.e., PEI(5 k) with 5000 g/mol and PEI(25 k) with 25,000 g/mol, and modified PEI(5 k) with maltose units (PEI-Mal) were investigated in dependence on the molar N/P ratio by using dynamic light scattering (DLS), zeta potential measurements, micro differential scanning calorimetry (mu-DSC), scanning-transmission electron microscopy (STEM), and cryo-scanning electron microscopy (cryo-SEM). A reloading of the polyplexes can be observed by adding the unmodified PEI samples of different molar mass. In excess of PEI a morphological transition from core-shell particles (at N/P 8) to loosely packed onion-like polyplexes (at N/P 40) is observed. The shift of the DSC melting peak from 88 degrees C to 76 degrees C indicates a destabilization of the DNA double helix due to the complexation with the unmodified PEI. Experiments with the maltose-modified PEI show a reloading already at a lower N/P ratio. Due to the presence of the sugar units in the periphery of the polycation electrostatic interactions between DNA become weaker, but cooperative H-bonding forces are reinforced. The resulting less-toxic, more compact polyplexes in excess of the PEI-Mal with two melting points and well distributed DNA segments are of special interest for extended gene delivery experiments. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{SchulzePrietzelKoetz2016, author = {Schulze, Nicole and Prietzel, Claudia Christina and Koetz, Joachim}, title = {Polyampholyte-mediated synthesis of anisotropic gold nanoplatelets}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {294}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-016-3890-y}, pages = {1297 -- 1304}, year = {2016}, abstract = {This paper focused on the synthesis of triangular nanoplatelets in the presence of a tubular network structure. The tubular network structure is formed by adding a strongly alternating polyampholyte, i.e., PalPhBisCarb, to a mixed vesicle system with a negatively charged bilayer containing phosphatidylcholin and AOT. Using the tubular network as a reducing agent in a one-step procedure, triangular and hexagonal nanoplatelets are formed. One can show that the nanoplatelet yield is enhanced by increasing the temperature and decreasing the reaction time. The platelet edge length can be decreased by heating the system up to 100 A degrees C. Due to specific interactions between PalPhBisCarb and the AOT/phospholipid bilayer, stacking and welding effects lead to the formation of ordered platelet structures. The reaction pathway to flat gold nanotriangles is discussed with regard to the twin plane growth model of gold nanoplates.}, language = {en} } @article{vonReppertSarhanSteteetal.2016, author = {von Reppert, Alexander and Sarhan, Radwan Mohamed and Stete, Felix and Pudell, Jan-Etienne and Del Fatti, N. and Crut, A. and Koetz, Joachim and Liebig, Ferenc and Prietzel, Claudia Christina and Bargheer, Matias}, title = {Watching the Vibration and Cooling of Ultrathin Gold Nanotriangles by Ultrafast X-ray Diffraction}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {120}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.6b11651}, pages = {28894 -- 28899}, year = {2016}, abstract = {We study the vibrations of ultrathin gold nanotriangles upon optical excitation of the electron gas by ultrafast X-ray diffraction. We quantitatively measure the strain evolution in these highly asymmetric nano-objects, providing a direct estimation of the amplitude and phase of the excited vibrational motion. The maximal strain value is well reproduced by calculations addressing pump absorption by the nanotriangles and their resulting thermal expansion. The amplitude and phase of the out-of-plane vibration mode with 3.6 ps period dominating the observed oscillations are related to two distinct excitation mechanisms. Electronic and phonon pressures impose stresses with different time dependences. The nanosecond relaxation of the expansion yields a direct temperature sensing of the nano-object. The presence of a thin organic molecular layer at the nanotriangle/substrate interfaces drastically reduces the thermal conductance to the substrate.}, language = {en} }