@article{MishurovaSydowThiedeetal.2020, author = {Mishurova, Tatiana and Sydow, Benjamin and Thiede, Tobias and Sizova, Irina and Ulbricht, Alexander and Bambach, Markus and Bruno, Giovanni}, title = {Residual stress and microstructure of a Ti-6Al-4V Wire Arc Additive Manufacturing hybrid demonstrator}, series = {Metals}, volume = {10}, journal = {Metals}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2075-4701}, doi = {10.3390/met10060701}, pages = {15}, year = {2020}, abstract = {Wire Arc Additive Manufacturing (WAAM) features high deposition rates and, thus, allows production of large components that are relevant for aerospace applications. However, a lot of aerospace parts are currently produced by forging or machining alone to ensure fast production and to obtain good mechanical properties; the use of these conventional process routes causes high tooling and material costs. A hybrid approach (a combination of forging and WAAM) allows making production more efficient. In this fashion, further structural or functional features can be built in any direction without using additional tools for every part. By using a combination of forging basic geometries with one tool set and adding the functional features by means of WAAM, the tool costs and material waste can be reduced compared to either completely forged or machined parts. One of the factors influencing the structural integrity of additively manufactured parts are (high) residual stresses, generated during the build process. In this study, the triaxial residual stress profiles in a hybrid WAAM part are reported, as determined by neutron diffraction. The analysis is complemented by microstructural investigations, showing a gradient of microstructure (shape and size of grains) along the part height. The highest residual stresses were found in the transition zone (between WAAM and forged part). The total stress range showed to be lower than expected for WAAM components. This could be explained by the thermal history of the component.}, language = {en} } @article{SerranoMunozMishurovaThiedeetal.2020, author = {Serrano-Munoz, Itziar and Mishurova, Tatiana and Thiede, Tobias and Sprengel, Maximilian and Kromm, Arne and Nadammal, Naresh and Nolze, Gert and Saliwan-Neumann, Romeo and Evans, Alexander and Bruno, Giovanni}, title = {The residual stress in as-built laser powder bed fusion IN718 alloy as a consequence of the scanning strategy induced microstructure}, series = {Scientific reports}, volume = {10}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-71112-9}, pages = {15}, year = {2020}, abstract = {The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2 degrees) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS.}, language = {en} } @article{ThiedeCabezaMishurovaetal.2018, author = {Thiede, Tobias and Cabeza, Sandra and Mishurova, Tatiana and Nadammal, Naresh and Kromm, Arne and Bode, Johannes and Haberland, Christoph and Bruno, Giovanni}, title = {Residual Stress in Selective Laser Melted Inconel 718}, series = {Materials performance and characterization}, volume = {7}, journal = {Materials performance and characterization}, number = {4}, publisher = {American Society for Testing and Materials}, address = {West Conshohocken}, issn = {2379-1365}, doi = {10.1520/MPC20170119}, pages = {717 -- 735}, year = {2018}, abstract = {The residual stress distribution in IN718 elongated prisms produced by selective laser melting was studied by means of neutron (bulk) and laboratory X-ray (surface) diffraction. Two deposition hatch lengths were considered. A horizontal plane near the top surface (perpendicular to the building direction) and a vertical plane near the lateral surface (parallel to the building direction) were investigated. Samples both in as-built (AB) condition and removed from the base plate (RE) were characterized. While surface stress fields seem constant for the AB condition, X-ray diffraction shows stress gradients along the hatch direction in the RE condition. The stress profiles correlate with the distortion maps obtained by tactile probe measurements. Neutron diffraction shows bulk stress gradients for all principal components along the main sample directions. We correlate the observed stress patterns with the hatch length, i.e., with its effect on temperature gradients and heat flow. The bulk stress gradients partially disappear after removal from the base plate.}, language = {en} } @article{KurpiersFerronRolandetal.2018, author = {Kurpiers, Jona and Ferron, Thomas and Roland, Steffen and Jakoby, Marius and Thiede, Tobias and Jaiser, Frank and Albrecht, Steve and Janietz, Silvia and Collins, Brian A. and Howard, Ian A. and Neher, Dieter}, title = {Probing the pathways of free charge generation in organic bulk heterojunction solar cells}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-04386-3}, pages = {11}, year = {2018}, abstract = {The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges.}, language = {en} } @article{MishurovaCabezaThiedeetal.2018, author = {Mishurova, Tatiana and Cabeza, Sandra and Thiede, Tobias and Nadammal, Naresh and Kromm, Arne and Klaus, Manuela and Genzel, Christoph and Haberland, Christoph and Bruno, Giovanni}, title = {The Influence of the Support Structure on Residual Stress and Distortion in SLM Inconel 718 Parts}, series = {Metallurgical and Materials Transactions A}, volume = {49A}, journal = {Metallurgical and Materials Transactions A}, number = {7}, publisher = {Springer}, address = {New York}, issn = {1073-5623}, doi = {10.1007/s11661-018-4653-9}, pages = {3038 -- 3046}, year = {2018}, abstract = {The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed.}, language = {en} } @article{NadammalCabezaMishurovaetal.2017, author = {Nadammal, Naresh and Cabeza, Sandra and Mishurova, Tatiana and Thiede, Tobias and Kromm, Arne and Seyfert, Christoph and Farahbod, Lena and Haberland, Christoph and Schneider, Judith Ann and Portella, Pedro Dolabella and Bruno, Giovanni}, title = {Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718}, series = {Materials \& Design}, volume = {134}, journal = {Materials \& Design}, publisher = {Elsevier}, address = {Oxford}, issn = {0264-1275}, doi = {10.1016/j.matdes.2017.08.049}, pages = {139 -- 150}, year = {2017}, abstract = {In the present study, samples fabricated by varying the deposition hatch length during selective laser melting of nickel based superalloy Inconel 718 were investigated. Microstructure and texture of these samples was characterized using scanning electron microscopy, combined with electron back-scattered diffraction, and residual stress assessment, using neutron diffraction method. Textured columnar grains oriented along the sample building direction were observed in the shorter hatch length processed sample. A ten-fold increase in the hatch length reduced the texture intensity by a factor of two attributed to the formation of finer grains in the longer hatch length sample. Larger gradients of transverse residual stress in the longer hatch length sample were also observed. Along the build direction, compressive stresses in the shorter hatch length and negligible stresses for the longer hatch length specimen were observed. Changes to the temperature gradient (G) in response to the hatch length variation, influenced the G to growth rate (R) ratio and the product GxR, in agreement with the microstructures and textures formed. For the residual stress development, geometry of the part also played an important role. In summary, tailored isotropy could be induced in Inconel 718 by a careful selection of parameters during selective laser melting.}, language = {en} } @phdthesis{Thiede2019, author = {Thiede, Tobias}, title = {A multiscale analysis of additively manufactured lattice structures}, doi = {10.25932/publishup-47041}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470418}, school = {Universit{\"a}t Potsdam}, pages = {xi, 97, LIII}, year = {2019}, abstract = {Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of lattice structures. These lattice structures shall be implemented in various industrial applications (e.g. gas turbines) for reasons of material savings or cooling channels. However, internal defects, residual stress, and structural deviations from the nominal geometry are unavoidable. In this work, the structural integrity of lattice structures manufactured by means of L-PBF was non-destructively investigated on a multiscale approach. A workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape. It was also observed that at least about 50\% of the powder porosity was released during production of the struts. Struts are the component of lattice structures and were investigated by means of laboratory CT. The focus was on the influence of the build angle on part porosity and surface quality. The surface topography analysis was advanced by the quantitative characterisation of re-entrant surface features. This characterisation was compared with conventional surface parameters showing their complementary information, but also the need for AM specific surface parameters. The mechanical behaviour of the lattice structure was investigated with in-situ CT under compression and successive digital volume correlation (DVC). The deformation was found to be knot-dominated, and therefore the lattice folds unit cell layer wise. The residual stress was determined experimentally for the first time in such lattice structures. Neutron diffraction was used for the non-destructive 3D stress investigation. The principal stress directions and values were determined in dependence of the number of measured directions. While a significant uni-axial stress state was found in the strut, a more hydrostatic stress state was found in the knot. In both cases, strut and knot, seven directions were at least needed to find reliable principal stress directions.}, language = {en} }