@article{SmirnovShpritsAllisonetal.2022, author = {Smirnov, Artem and Shprits, Yuri Y. and Allison, Hayley and Aseev, Nikita and Drozdov, Alexander and Kollmann, Peter and Wang, Dedong and Saikin, Anthony}, title = {Storm-Time evolution of the Equatorial Electron Pitch Angle Distributions in Earth's Outer Radiation Belt}, series = {Frontiers in astronomy and space sciences}, volume = {9}, journal = {Frontiers in astronomy and space sciences}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-987X}, doi = {10.3389/fspas.2022.836811}, pages = {15}, year = {2022}, abstract = {In this study we analyze the storm-time evolution of equatorial electron pitch angle distributions (PADs) in the outer radiation belt region using observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument aboard the Van Allen Probes in 2012-2019. The PADs are approximated using a sum of the first, third and fifth sine harmonics. Different combinations of the respective coefficients refer to the main PAD shapes within the outer radiation belt, namely the pancake, flat-top, butterfly and cap PADs. We conduct a superposed epoch analysis of 129 geomagnetic storms and analyze the PAD evolution for day and night MLT sectors. PAD shapes exhibit a strong energy-dependent response. At energies of tens of keV, the PADs exhibit little variation throughout geomagnetic storms. Cap PADs are mainly observed at energies < 300 keV, and their extent in L shrinks with increasing energy. The cap distributions transform into the pancake PADs around the main phase of the storm on the nightside, and then come back to their original shapes during the recovery phase. At higher energies on the dayside, the PADs are mainly pancake during pre-storm conditions and become more anisotropic during the main phase. The quiet-time butterfly PADs can be observed on the nightside at L> 5.6. During the main phase, butterfly PADs have stronger 90 degrees-minima and can be observed at lower L-shells (down to L = 5), then transitioning into flat-top PADs at L similar to 4.5 - 5 and pancake PADs at L < 4.5. The resulting PAD coefficients for different energies, locations and storm epochs can be used to test the wave models and physics-based radiation belt codes in terms of pitch angle distributions.}, language = {en} } @phdthesis{Smirnov2023, author = {Smirnov, Artem}, title = {Understanding the dynamics of the near-earth space environment utilizing long-term satellite observations}, doi = {10.25932/publishup-61371}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613711}, school = {Universit{\"a}t Potsdam}, pages = {xxxvi, 286}, year = {2023}, abstract = {The near-Earth space environment is a highly complex system comprised of several regions and particle populations hazardous to satellite operations. The trapped particles in the radiation belts and ring current can cause significant damage to satellites during space weather events, due to deep dielectric and surface charging. Closer to Earth is another important region, the ionosphere, which delays the propagation of radio signals and can adversely affect navigation and positioning. In response to fluctuations in solar and geomagnetic activity, both the inner-magnetospheric and ionospheric populations can undergo drastic and sudden changes within minutes to hours, which creates a challenge for predicting their behavior. Given the increasing reliance of our society on satellite technology, improving our understanding and modeling of these populations is a matter of paramount importance. In recent years, numerous spacecraft have been launched to study the dynamics of particle populations in the near-Earth space, transforming it into a data-rich environment. To extract valuable insights from the abundance of available observations, it is crucial to employ advanced modeling techniques, and machine learning methods are among the most powerful approaches available. This dissertation employs long-term satellite observations to analyze the processes that drive particle dynamics, and builds interdisciplinary links between space physics and machine learning by developing new state-of-the-art models of the inner-magnetospheric and ionospheric particle dynamics. The first aim of this thesis is to investigate the behavior of electrons in Earth's radiation belts and ring current. Using ~18 years of electron flux observations from the Global Positioning System (GPS), we developed the first machine learning model of hundreds-of-keV electron flux at Medium Earth Orbit (MEO) that is driven solely by solar wind and geomagnetic indices and does not require auxiliary flux measurements as inputs. We then proceeded to analyze the directional distributions of electrons, and for the first time, used Fourier sine series to fit electron pitch angle distributions (PADs) in Earth's inner magnetosphere. We performed a superposed epoch analysis of 129 geomagnetic storms during the Van Allen Probes era and demonstrated that electron PADs have a strong energy-dependent response to geomagnetic activity. Additionally, we showed that the solar wind dynamic pressure could be used as a good predictor of the PAD dynamics. Using the observed dependencies, we created the first PAD model with a continuous dependence on L, magnetic local time (MLT) and activity, and developed two techniques to reconstruct near-equatorial electron flux observations from low-PA data using this model. The second objective of this thesis is to develop a novel model of the topside ionosphere. To achieve this goal, we collected observations from five of the most widely used ionospheric missions and intercalibrated these data sets. This allowed us to use these data jointly for model development, validation, and comparison with other existing empirical models. We demonstrated, for the first time, that ion density observations by Swarm Langmuir Probes exhibit overestimation (up to ~40-50\%) at low and mid-latitudes on the night side, and suggested that the influence of light ions could be a potential cause of this overestimation. To develop the topside model, we used 19 years of radio occultation (RO) electron density profiles, which were fitted with a Chapman function with a linear dependence of scale height on altitude. This approximation yields 4 parameters, namely the peak density and height of the F2-layer and the slope and intercept of the linear scale height trend, which were modeled using feedforward neural networks (NNs). The model was extensively validated against both RO and in-situ observations and was found to outperform the International Reference Ionosphere (IRI) model by up to an order of magnitude. Our analysis showed that the most substantial deviations of the IRI model from the data occur at altitudes of 100-200 km above the F2-layer peak. The developed NN-based ionospheric model reproduces the effects of various physical mechanisms observed in the topside ionosphere and provides highly accurate electron density predictions. This dissertation provides an extensive study of geospace dynamics, and the main results of this work contribute to the improvement of models of plasma populations in the near-Earth space environment.}, language = {en} } @article{SmirnovShpritsAllisonetal.2022, author = {Smirnov, Artem and Shprits, Yuri Y. and Allison, Hayley and Aseev, Nikita and Drozdov, Alexander and Kollmann, Peter and Wang, Dedong and Saikin, Anthony}, title = {An empirical model of the equatorial electron pitch angle distributions in earth's outer radiation belt}, series = {Space Weather: the International Journal of Research and Applications}, volume = {20}, journal = {Space Weather: the International Journal of Research and Applications}, number = {9}, publisher = {American Geophysical Union}, address = {Washington, DC}, issn = {1542-7390}, doi = {10.1029/2022SW003053}, pages = {17}, year = {2022}, abstract = {In this study, we present an empirical model of the equatorial electron pitch angle distributions (PADs) in the outer radiation belt based on the full data set collected by the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes in 2012-2019. The PADs are fitted with a combination of the first, third and fifth sine harmonics. The resulting equation resolves all PAD types found in the outer radiation belt (pancake, flat-top, butterfly and cap PADs) and can be analytically integrated to derive omnidirectional flux. We introduce a two-step modeling procedure that for the first time ensures a continuous dependence on L, magnetic local time and activity, parametrized by the solar wind dynamic pressure. We propose two methods to reconstruct equatorial electron flux using the model. The first approach requires two uni-directional flux observations and is applicable to low-PA data. The second method can be used to reconstruct the full equatorial PADs from a single uni- or omnidirectional measurement at off-equatorial latitudes. The model can be used for converting the long-term data sets of electron fluxes to phase space density in terms of adiabatic invariants, for physics-based modeling in the form of boundary conditions, and for data assimilation purposes.}, language = {en} } @article{SmirnovBerrendorfShpritsetal.2020, author = {Smirnov, Artem and Berrendorf, Max and Shprits, Yuri Y. and Kronberg, Elena A. and Allison, Hayley J. and Aseev, Nikita and Zhelavskaya, Irina and Morley, Steven K. and Reeves, Geoffrey D. and Carver, Matthew R. and Effenberger, Frederic}, title = {Medium energy electron flux in earth's outer radiation belt (MERLIN)}, series = {Space weather : the international journal of research and applications}, volume = {18}, journal = {Space weather : the international journal of research and applications}, number = {11}, publisher = {American geophysical union, AGU}, address = {Washington}, issn = {1542-7390}, doi = {10.1029/2020SW002532}, pages = {20}, year = {2020}, abstract = {The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant threat to satellite operation. While various models of electron flux both for low and relativistic energies have been developed, the behavior of medium energy (120-600 keV) electrons, especially in the MEO region, remains poorly quantified. At these energies, electrons are driven by both convective and diffusive transport, and their prediction usually requires sophisticated 4D modeling codes. In this paper, we present an alternative approach using the Light Gradient Boosting (LightGBM) machine learning algorithm. The Medium Energy electRon fLux In Earth's outer radiatioN belt (MERLIN) model takes as input the satellite position, a combination of geomagnetic indices and solar wind parameters including the time history of velocity, and does not use persistence. MERLIN is trained on >15 years of the GPS electron flux data and tested on more than 1.5 years of measurements. Tenfold cross validation yields that the model predicts the MEO radiation environment well, both in terms of dynamics and amplitudes o f flux. Evaluation on the test set shows high correlation between the predicted and observed electron flux (0.8) and low values of absolute error. The MERLIN model can have wide space weather applications, providing information for the scientific community in the form of radiation belts reconstructions, as well as industry for satellite mission design, nowcast of the MEO environment, and surface charging analysis.}, language = {en} }