@misc{JonesGonzalezFortesConnelletal.2015, author = {Jones, Eppie R. and Gonz{\´a}lez-Fortes, Gloria M. and Connell, Sarah and Siska, Veronika and Eriksson, Anders and Martiniano, Rui and McLaughlin, Russell L. and Llorente, Marcos Gallego and Cassidy, Lara M. and Gamba, Cristina and Meshveliani, Tengiz and Bar-Yosef, Ofer and M{\"u}ller, Werner and Belfer-Cohen, Anna and Matskevich, Zinovi and Jakeli, Nino and Higham, Thomas F. G. and Currat, Mathias and Lordkipanidze, David and Hofreiter, Michael and Manica, Andrea and Pinhasi, Ron and Bradley, Daniel G.}, title = {Upper Palaeolithic genomes reveal deep roots of modern Eurasians}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1334}, issn = {1866-8372}, doi = {10.25932/publishup-43931}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439317}, pages = {8}, year = {2015}, abstract = {We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic-Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers ∼45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers ∼25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe ∼3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages.}, language = {en} } @article{SiskaJonesJeonetal.2017, author = {Siska, Veronika and Jones, Eppie Ruth and Jeon, Sungwon and Bhak, Youngjune and Kim, Hak-Min and Cho, Yun Sung and Kim, Hyunho and Lee, Kyusang and Veselovskaya, Elizaveta and Balueva, Tatiana and Gallego-Llorente, Marcos and Hofreiter, Michael and Bradley, Daniel G. and Eriksson, Anders and Pinhasi, Ron and Bhak, Jong and Manica, Andrea}, title = {Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago}, series = {Science Advances}, volume = {3}, journal = {Science Advances}, number = {2}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.1601877}, pages = {10}, year = {2017}, abstract = {Ancient genomes have revolutionized our understanding of Holocene prehistory and, particularly, the Neolithic transition in western Eurasia. In contrast, East Asia has so far received little attention, despite representing a core region at which the Neolithic transition took place independently ~3 millennia after its onset in the Near East. We report genome-wide data from two hunter-gatherers from Devil's Gate, an early Neolithic cave site (dated to ~7.7 thousand years ago) located in East Asia, on the border between Russia and Korea. Both of these individuals are genetically most similar to geographically close modern populations from the Amur Basin, all speaking Tungusic languages, and, in particular, to the Ulchi. The similarity to nearby modern populations and the low levels of additional genetic material in the Ulchi imply a high level of genetic continuity in this region during the Holocene, a pattern that markedly contrasts with that reported for Europe.}, language = {en} } @misc{GallegoLlorenteSarahJonesetal.2016, author = {Gallego-Llorente, Marcos and Sarah, Connell and Jones, Eppie R. and Merrett, Deborah C. and Jeon, Y. and Eriksson, Anders and Siska, Veronika and Gamba, Cristina and Meiklejohn, Christopher and Beyer, Robert and Jeon, Sungwon and Cho, Yun Sung and Hofreiter, Michael and Bhak, Jong and Manica, Andrea and Pinhasi, Ron}, title = {The genetics of an early Neolithic pastoralist from the Zagros, Iran}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {952}, issn = {1866-8372}, doi = {10.25932/publishup-43935}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439355}, pages = {9}, year = {2016}, abstract = {The agricultural transition profoundly changed human societies. We sequenced and analysed the first genome (1.39x) of an early Neolithic woman from Ganj Dareh, in the Zagros Mountains of Iran, a site with early evidence for an economy based on goat herding, ca. 10,000 BP. We show that Western Iran was inhabited by a population genetically most similar to hunter-gatherers from the Caucasus, but distinct from the Neolithic Anatolian people who later brought food production into Europe. The inhabitants of Ganj Dareh made little direct genetic contribution to modern European populations, suggesting those of the Central Zagros were somewhat isolated from other populations of the Fertile Crescent. Runs of homozygosity are of a similar length to those from Neolithic farmers, and shorter than those of Caucasus and Western Hunter-Gatherers, suggesting that the inhabitants of Ganj Dareh did not undergo the large population bottleneck suffered by their northern neighbours. While some degree of cultural diffusion between Anatolia, Western Iran and other neighbouring regions is possible, the genetic dissimilarity between early Anatolian farmers and the inhabitants of Ganj Dareh supports a model in which Neolithic societies in these areas were distinct.}, language = {en} } @article{GonzalezFortesJonesLightfootetal.2017, author = {Gonz{\´a}lez-Fortes, Gloria M. and Jones, Eppie R. and Lightfoot, Emma and Bonsall, Clive and Lazar, Catalin and Dolores Garralda, Maria and Drak, Labib and Siska, Veronika and Simalcsik, Angela and Boroneant, Adina and Vidal Romani, Juan Ramon and Vaqueiro Rodriguez, Marcos and Arias, Pablo and Pinhasi, Ron and Manica, Andrea and Hofreiter, Michael}, title = {Paleogenomic Evidence for Multi-generational Mixing between Neolithic Farmers and Mesolithic Hunter-Gatherers in the Lower Danube Basin}, series = {Current biology}, volume = {27}, journal = {Current biology}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2017.05.023}, pages = {1801 -- +}, year = {2017}, abstract = {The transition from hunting and gathering to farming involved profound cultural and technological changes. In Western and Central Europe, these changes occurred rapidly and synchronously after the arrival of early farmers of Anatolian origin [1-3], who largely replaced the local Mesolithic hunter-gatherers [1, 4-6]. Further east, in the Baltic region, the transition was gradual, with little or no genetic input from incoming farmers [7]. Here we use ancient DNA to investigate the relationship between hunter-gatherers and farmers in the Lower Danube basin, a geographically intermediate area that is characterized by a rapid Neolithic transition but also by the presence of archaeological evidence that points to cultural exchange, and thus possible admixture, between hunter-gatherers and farmers. We recovered four human paleogenomes (1.13 to 4.13 coverage) from Romania spanning a time transect between 8.8 thousand years ago (kya) and 5.4 kya and supplemented them with two Mesolithic genomes (1.73- and 5.33) from Spain to provide further context on the genetic background of Mesolithic Europe. Our results show major Western hunter-gatherer (WHG) ancestry in a Romanian Eneolithic sample with a minor, but sizeable, contribution from Anatolian farmers, suggesting multiple admixture events between hunter-gatherers and farmers. Dietary stableisotope analysis of this sample suggests a mixed terrestrial/ aquatic diet. Our results provide support for complex interactions among hunter-gatherers and farmers in the Danube basin, demonstrating that in some regions, demic and cultural diffusion were not mutually exclusive, but merely the ends of a continuum for the process of Neolithization.}, language = {en} } @misc{GonzalezFortesJonesLightfootetal.2017, author = {Gonz{\´a}lez-Fortes, Gloria M. and Jones, Eppie R. and Lightfoot, Emma and Bonsall, Clive and Lazar, Catalin and Grandal-d'Anglade, Aurora and Garralda, Mar{\´i}a Dolores and Drak, Labib and Siska, Veronika and Simalcsik, Angela and Boroneant, Adina and Roman{\´i}, Juan Ram{\´o}n Vidal and Vaqueiro Rodr{\´i}guez, Marcos and Arias, Pablo and Pinhasi, Ron and Manica, Andrea and Hofreiter, Michael}, title = {Paleogenomic evidence for multi-generational mixing between Neolithic Farmers and Mesolithic Hunter-Gatherers in the lower Danube Basin}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {794}, issn = {1866-8372}, doi = {10.25932/publishup-44011}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440115}, pages = {1801 -- 1820}, year = {2017}, abstract = {The transition from hunting and gathering to farming involved profound cultural and technological changes. In Western and Central Europe, these changes occurred rapidly and synchronously after the arrival of early farmers of Anatolian origin [1-3], who largely replaced the local Mesolithic hunter-gatherers [1, 4-6]. Further east, in the Baltic region, the transition was gradual, with little or no genetic input from incoming farmers [7]. Here we use ancient DNA to investigate the relationship between hunter-gatherers and farmers in the Lower Danube basin, a geographically intermediate area that is characterized by a rapid Neolithic transition but also by the presence of archaeological evidence that points to cultural exchange, and thus possible admixture, between hunter-gatherers and farmers. We recovered four human paleogenomes (1.13 to 4.13 coverage) from Romania spanning a time transect between 8.8 thousand years ago (kya) and 5.4 kya and supplemented them with two Mesolithic genomes (1.73- and 5.33) from Spain to provide further context on the genetic background of Mesolithic Europe. Our results show major Western hunter-gatherer (WHG) ancestry in a Romanian Eneolithic sample with a minor, but sizeable, contribution from Anatolian farmers, suggesting multiple admixture events between hunter-gatherers and farmers. Dietary stableisotope analysis of this sample suggests a mixed terrestrial/ aquatic diet. Our results provide support for complex interactions among hunter-gatherers and farmers in the Danube basin, demonstrating that in some regions, demic and cultural diffusion were not mutually exclusive, but merely the ends of a continuum for the process of Neolithization.}, language = {en} } @misc{SiskaJonesJeonetal.2017, author = {Siska, Veronika and Jones, Eppie Ruth and Jeon, Sungwon and Bhak, Youngjune and Kim, Hak-Min and Cho, Yun Sung and Kim, Hyunho and Lee, Kyusang and Veselovskaya, Elizaveta and Balueva, Tatiana and Gallego-Llorente, Marcos and Hofreiter, Michael and Bradley, Daniel G. and Eriksson, Anders and Pinhasi, Ron and Bhak, Jong and Manica, Andrea}, title = {Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {791}, issn = {1866-8372}, doi = {10.25932/publishup-43997}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439977}, pages = {11}, year = {2017}, abstract = {Ancient genomes have revolutionized our understanding of Holocene prehistory and, particularly, the Neolithic transition in western Eurasia. In contrast, East Asia has so far received little attention, despite representing a core region at which the Neolithic transition took place independently similar to 3 millennia after its onset in the Near East. We report genome-wide data from two hunter-gatherers from Devil's Gate, an early Neolithic cave site (dated to similar to 7.7 thousand years ago) located in East Asia, on the border between Russia and Korea. Both of these individuals are genetically most similar to geographically close modern populations from the Amur Basin, all speaking Tungusic languages, and, in particular, to the Ulchi. The similarity to nearby modern populations and the low levels of additional genetic material in the Ulchi imply a high level of genetic continuity in this region during the Holocene, a pattern that markedly contrasts with that reported for Europe.}, language = {en} } @article{JonesGonzalezFortesConnelletal.2015, author = {Jones, Eppie R. and Gonz{\´a}lez-Fortes, Gloria M. and Connell, Sarah and Siska, Veronika and Eriksson, Anders and Martiniano, Rui and McLaughlin, Russell L. and Llorente, Marcos Gallego and Cassidy, Lara M. and Gamba, Cristina and Meshveliani, Tengiz and Bar-Yosef, Ofer and Mueller, Werner and Belfer-Cohen, Anna and Matskevich, Zinovi and Jakeli, Nino and Higham, Thomas F. G. and Currat, Mathias and Lordkipanidze, David and Hofreiter, Michael and Manica, Andrea and Pinhasi, Ron and Bradley, Daniel G.}, title = {Upper Palaeolithic genomes reveal deep roots of modern Eurasians}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms9912}, pages = {8}, year = {2015}, abstract = {We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic-Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers similar to 45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers similar to 25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe similar to 3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages.}, language = {en} }