@article{MarwanSchinkelKurths2013, author = {Marwan, Norbert and Schinkel, Stefan and Kurths, J{\"u}rgen}, title = {Recurrence plots 25 years later -Gaining confidence in dynamical transitions}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {101}, journal = {epl : a letters journal exploring the frontiers of physics}, number = {2}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/101/20007}, pages = {6}, year = {2013}, abstract = {Recurrence-plot-based time series analysis is widely used to study changes and transitions in the dynamics of a system or temporal deviations from its overall dynamical regime. However, most studies do not discuss the significance of the detected variations in the recurrence quantification measures. In this letter we propose a novel method to add a confidence measure to the recurrence quantification analysis. We show how this approach can be used to study significant changes in dynamical systems due to a change in control parameters, chaos-order as well as chaos-chaos transitions. Finally we study and discuss climate transitions by analysing a marine proxy record for past sea surface temperature. This paper is dedicated to the 25th anniversary of the introduction of recurrence plots.}, language = {en} } @article{SchinkelMarwanKurths2009, author = {Schinkel, Stefan and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Brain signal analysis based on recurrences}, issn = {0928-4257}, doi = {10.1016/j.jphysparis.2009.05.007}, year = {2009}, abstract = {The EEG is one of the most commonly used tools in brain research. Though of high relevance in research, the data obtained is very noisy and nonstationary. In the present article we investigate the applicability of a nonlinear data analysis method, the recurrence quantification analysis (RQA), to Such data. The method solely rests on the natural property of recurrence which is a phenomenon inherent to complex systems, such as the brain. We show that this method is indeed suitable for the analysis of EEG data and that it might improve contemporary EEG analysis.}, language = {en} } @article{SchinkelMarwanDimigenetal.2009, author = {Schinkel, Stefan and Marwan, Norbert and Dimigen, Olaf and Kurths, J{\"u}rgen}, title = {Confidence bounds of recurrence-based complexity measures}, issn = {0375-9601}, doi = {10.1016/j.physleta.2009.04.045}, year = {2009}, abstract = {In the recent past, recurrence quantification analysis (RQA) has gained an increasing interest in various research areas. The complexity measures the RQA provides have been useful in describing and analysing a broad range of data. It is known to be rather robust to noise and nonstationarities. Yet, one key question in empirical research concerns the confidence bounds of measured data. In the present Letter we suggest a method for estimating the confidence bounds of recurrence-based complexity measures. We study the applicability of the suggested method with model and real- life data.}, language = {en} } @phdthesis{Schinkel2010, author = {Schinkel, Stefan}, title = {Single trial analysis of event-related potentials - a recurrence-based approach}, address = {Potsdam}, pages = {97 S.}, year = {2010}, language = {en} }