@article{CvetkovićConradLie2021, author = {Cvetković, Nada and Conrad, Tim and Lie, Han Cheng}, title = {A convergent discretization method for transition path theory for diffusion processes}, series = {Multiscale modeling \& simulation : a SIAM interdisciplinary journal}, volume = {19}, journal = {Multiscale modeling \& simulation : a SIAM interdisciplinary journal}, number = {1}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1540-3459}, doi = {10.1137/20M1329354}, pages = {242 -- 266}, year = {2021}, abstract = {Transition path theory (TPT) for diffusion processes is a framework for analyzing the transitions of multiscale ergodic diffusion processes between disjoint metastable subsets of state space. Most methods for applying TPT involve the construction of a Markov state model on a discretization of state space that approximates the underlying diffusion process. However, the assumption of Markovianity is difficult to verify in practice, and there are to date no known error bounds or convergence results for these methods. We propose a Monte Carlo method for approximating the forward committor, probability current, and streamlines from TPT for diffusion processes. Our method uses only sample trajectory data and partitions of state space based on Voronoi tessellations. It does not require the construction of a Markovian approximating process. We rigorously prove error bounds for the approximate TPT objects and use these bounds to show convergence to their exact counterparts in the limit of arbitrarily fine discretization. We illustrate some features of our method by application to a process that solves the Smoluchowski equation on a triple-well potential.}, language = {en} } @article{AyanbayevKlebanovLieetal.2021, author = {Ayanbayev, Birzhan and Klebanov, Ilja and Lie, Han Cheng and Sullivan, Tim J.}, title = {Gamma-convergence of Onsager-Machlup functionals}, series = {Inverse problems : an international journal of inverse problems, inverse methods and computerised inversion of data}, volume = {38}, journal = {Inverse problems : an international journal of inverse problems, inverse methods and computerised inversion of data}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0266-5611}, doi = {10.1088/1361-6420/ac3f82}, pages = {35}, year = {2021}, abstract = {We derive Onsager-Machlup functionals for countable product measures on weighted l(p) subspaces of the sequence space R-N. Each measure in the product is a shifted and scaled copy of a reference probability measure on R that admits a sufficiently regular Lebesgue density. We study the equicoercivity and Gamma-convergence of sequences of Onsager-Machlup functionals associated to convergent sequences of measures within this class. We use these results to establish analogous results for probability measures on separable Banach or Hilbert spaces, including Gaussian, Cauchy, and Besov measures with summability parameter 1 <= p <= 2. Together with part I of this paper, this provides a basis for analysis of the convergence of maximum a posteriori estimators in Bayesian inverse problems and most likely paths in transition path theory.}, language = {en} } @article{LieStahnSullivan2022, author = {Lie, Han Cheng and Stahn, Martin and Sullivan, Tim J.}, title = {Randomised one-step time integration methods for deterministic operator differential equations}, series = {Calcolo}, volume = {59}, journal = {Calcolo}, number = {1}, publisher = {Springer}, address = {Milano}, issn = {0008-0624}, doi = {10.1007/s10092-022-00457-6}, pages = {33}, year = {2022}, abstract = {Uncertainty quantification plays an important role in problems that involve inferring a parameter of an initial value problem from observations of the solution. Conrad et al. (Stat Comput 27(4):1065-1082, 2017) proposed randomisation of deterministic time integration methods as a strategy for quantifying uncertainty due to the unknown time discretisation error. We consider this strategy for systems that are described by deterministic, possibly time-dependent operator differential equations defined on a Banach space or a Gelfand triple. Our main results are strong error bounds on the random trajectories measured in Orlicz norms, proven under a weaker assumption on the local truncation error of the underlying deterministic time integration method. Our analysis establishes the theoretical validity of randomised time integration for differential equations in infinite-dimensional settings.}, language = {en} } @article{LieStuartSullivan2019, author = {Lie, Han Cheng and Stuart, A. M. and Sullivan, Tim J.}, title = {Strong convergence rates of probabilistic integrators for ordinary differential equations}, series = {Statistics and Computing}, volume = {29}, journal = {Statistics and Computing}, number = {6}, publisher = {Springer}, address = {Dordrecht}, issn = {0960-3174}, doi = {10.1007/s11222-019-09898-6}, pages = {1265 -- 1283}, year = {2019}, abstract = {Probabilistic integration of a continuous dynamical system is a way of systematically introducing discretisation error, at scales no larger than errors introduced by standard numerical discretisation, in order to enable thorough exploration of possible responses of the system to inputs. It is thus a potentially useful approach in a number of applications such as forward uncertainty quantification, inverse problems, and data assimilation. We extend the convergence analysis of probabilistic integrators for deterministic ordinary differential equations, as proposed by Conrad et al. (Stat Comput 27(4):1065-1082, 2017. ), to establish mean-square convergence in the uniform norm on discrete- or continuous-time solutions under relaxed regularity assumptions on the driving vector fields and their induced flows. Specifically, we show that randomised high-order integrators for globally Lipschitz flows and randomised Euler integrators for dissipative vector fields with polynomially bounded local Lipschitz constants all have the same mean-square convergence rate as their deterministic counterparts, provided that the variance of the integration noise is not of higher order than the corresponding deterministic integrator. These and similar results are proven for probabilistic integrators where the random perturbations may be state-dependent, non-Gaussian, or non-centred random variables.}, language = {en} } @article{KoltaiLiePlonka2019, author = {Koltai, Peter and Lie, Han Cheng and Plonka, Martin}, title = {Frechet differentiable drift dependence of Perron-Frobenius and Koopman operators for non-deterministic dynamics}, series = {Nonlinearity}, volume = {32}, journal = {Nonlinearity}, number = {11}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0951-7715}, doi = {10.1088/1361-6544/ab1f2a}, pages = {4232 -- 4257}, year = {2019}, abstract = {We prove the Fr{\´e}chet differentiability with respect to the drift of Perron-Frobenius and Koopman operators associated to time-inhomogeneous ordinary stochastic differential equations. This result relies on a similar differentiability result for pathwise expectations of path functionals of the solution of the stochastic differential equation, which we establish using Girsanov's formula. We demonstrate the significance of our result in the context of dynamical systems and operator theory, by proving continuously differentiable drift dependence of the simple eigen- and singular values and the corresponding eigen- and singular functions of the stochastic Perron-Frobenius and Koopman operators.}, language = {en} }