@misc{AlirezaeizanjaniGrossmannPfeiferetal.2020, author = {Alirezaeizanjani, Zahra and Großmann, Robert and Pfeifer, Veronika and Hintsche, Marius and Beta, Carsten}, title = {Chemotaxis strategies of bacteria with multiple run modes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {22}, issn = {1866-8372}, doi = {10.25932/publishup-51909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519098}, pages = {10}, year = {2020}, abstract = {Bacterial chemotaxis-a fundamental example of directional navigation in the living world-is key to many biological processes, including the spreading of bacterial infections. Many bacterial species were recently reported to exhibit several distinct swimming modes-the flagella may, for example, push the cell body or wrap around it. How do the different run modes shape the chemotaxis strategy of a multimode swimmer? Here, we investigate chemotactic motion of the soil bacterium Pseudomonas putida as a model organism. By simultaneously tracking the position of the cell body and the configuration of its flagella, we demonstrate that individual run modes show different chemotactic responses in nutrition gradients and, thus, constitute distinct behavioral states. On the basis of an active particle model, we demonstrate that switching between multiple run states that differ in their speed and responsiveness provides the basis for robust and efficient chemotaxis in complex natural habitats.}, language = {en} } @article{BaerGrossmannHeidenreichetal.2019, author = {B{\"a}r, Markus and Großmann, Robert and Heidenreich, Sebastian and Peruani, Fernando}, title = {Self-propelled rods}, series = {Annual review of condensed matter physics}, volume = {11}, journal = {Annual review of condensed matter physics}, publisher = {Annual Reviews}, address = {Palo Alto}, issn = {1947-5454}, doi = {10.1146/annurev-conmatphys-031119-050611}, pages = {441 -- 466}, year = {2019}, abstract = {A wide range of experimental systems including gliding, swarming and swimming bacteria, in vitro motility assays, and shaken granular media are commonly described as self-propelled rods. Large ensembles of those entities display a large variety of self-organized, collective phenomena, including the formation of moving polar clusters, polar and nematic dynamic bands, mobility-induced phase separation, topological defects, and mesoscale turbulence, among others. Here, we give a brief survey of experimental observations and review the theoretical description of self-propelled rods. Our focus is on the emergent pattern formation of ensembles of dry self-propelled rods governed by short-ranged, contact mediated interactions and their wet counterparts that are also subject to long-ranged hydrodynamic flows. Altogether, self-propelled rods provide an overarching theme covering many aspects of active matter containing well-explored limiting cases. Their collective behavior not only bridges the well-studied regimes of polar selfpropelled particles and active nematics, and includes active phase separation, but also reveals a rich variety of new patterns.}, language = {en} } @article{MorenoGrossmannBetaetal.2022, author = {Moreno, Eduardo and Großmann, Robert and Beta, Carsten and Alonso, Sergio}, title = {From single to collective motion of social amoebae}, series = {Frontiers in physics}, volume = {9}, journal = {Frontiers in physics}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-424X}, doi = {10.3389/fphy.2021.750187}, pages = {17}, year = {2022}, abstract = {The coupling of the internal mechanisms of cell polarization to cell shape deformations and subsequent cell crawling poses many interdisciplinary scientific challenges. Several mathematical approaches have been proposed to model the coupling of both processes, where one of the most successful methods relies on a phase field that encodes the morphology of the cell, together with the integration of partial differential equations that account for the polarization mechanism inside the cell domain as defined by the phase field. This approach has been previously employed to model the motion of single cells of the social amoeba Dictyostelium discoideum, a widely used model organism to study actin-driven motility and chemotaxis of eukaryotic cells. Besides single cell motility, Dictyostelium discoideum is also well-known for its collective behavior. Here, we extend the previously introduced model for single cell motility to describe the collective motion of large populations of interacting amoebae by including repulsive interactions between the cells. We performed numerical simulations of this model, first characterizing the motion of single cells in terms of their polarity and velocity vectors. We then systematically studied the collisions between two cells that provided the basic interaction scenarios also observed in larger ensembles of interacting amoebae. Finally, the relevance of the cell density was analyzed, revealing a systematic decrease of the motility with density, associated with the formation of transient cell clusters that emerge in this system even though our model does not include any attractive interactions between cells. This model is a prototypical active matter system for the investigation of the emergent collective dynamics of deformable, self-driven cells with a highly complex, nonlinear coupling of cell shape deformations, self-propulsion and repulsive cell-cell interactions. Understanding these self-organization processes of cells like their autonomous aggregation is of high relevance as collective amoeboid motility is part of wound healing, embryonic morphogenesis or pathological processes like the spreading of metastatic cancer cells.}, language = {en} } @article{MuravevaBekirLomadzeetal.2022, author = {Muraveva, Valeriia and Bekir, Marek and Lomadze, Nino and Großmann, Robert and Beta, Carsten and Santer, Svetlana}, title = {Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus}, series = {Applied physics letters}, volume = {120}, journal = {Applied physics letters}, number = {23}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/5.0090229}, pages = {5}, year = {2022}, abstract = {Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications.}, language = {en} } @article{AlirezaeizanjaniGrossmannPfeiferetal.2020, author = {Alirezaeizanjani, Zahra and Großmann, Robert and Pfeifer, Veronika and Hintsche, Marius and Beta, Carsten}, title = {Chemotaxis strategies of bacteria with multiple run modes}, series = {Science advances}, volume = {6}, journal = {Science advances}, number = {22}, publisher = {American Association for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aaz6153}, pages = {8}, year = {2020}, abstract = {Bacterial chemotaxis-a fundamental example of directional navigation in the living world-is key to many biological processes, including the spreading of bacterial infections. Many bacterial species were recently reported to exhibit several distinct swimming modes-the flagella may, for example, push the cell body or wrap around it. How do the different run modes shape the chemotaxis strategy of a multimode swimmer? Here, we investigate chemotactic motion of the soil bacterium Pseudomonas putida as a model organism. By simultaneously tracking the position of the cell body and the configuration of its flagella, we demonstrate that individual run modes show different chemotactic responses in nutrition gradients and, thus, constitute distinct behavioral states. On the basis of an active particle model, we demonstrate that switching between multiple run states that differ in their speed and responsiveness provides the basis for robust and efficient chemotaxis in complex natural habitats.}, language = {en} } @article{GrossmannAransonPeruani2020, author = {Großmann, Robert and Aranson, Igor S. and Peruani, Fernando}, title = {A particle-field approach bridges phase separation and collective motion in active matter}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-020-18978-5}, pages = {12}, year = {2020}, abstract = {Whereas self-propelled hard discs undergo motility-induced phase separation, self-propelled rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion, and spatio-temporal chaos. In this work, we present a theoretical framework representing active particles by continuum fields. This concept combines the simplicity of alignment-based models, enabling analytical studies, and realistic models that incorporate the shape of self-propelled objects explicitly. By varying particle shape from circular to ellipsoidal, we show how nonequilibrium stresses acting among self-propelled rods destabilize motility-induced phase separation and facilitate orientational ordering, thereby connecting the realms of scalar and vectorial active matter. Though the interaction potential is strictly apolar, both, polar and nematic order may emerge and even coexist. Accordingly, the symmetry of ordered states is a dynamical property in active matter. The presented framework may represent various systems including bacterial colonies, cytoskeletal extracts, or shaken granular media. Interacting self-propelled particles exhibit phase separation or collective motion depending on particle shape. A unified theory connecting these paradigms represents a major challenge in active matter, which the authors address here by modeling active particles as continuum fields.}, language = {en} }