@article{DaschewskiKreutzbruckPrageretal.2015, author = {Daschewski, Maxim and Kreutzbruck, Marc and Prager, Jens and Dohse, Elmar and Gaal, Mate and Harrer, Andrea}, title = {Resonance-free measuring and excitation of ultrasound}, series = {Technisches Messen : tm ; Plattform f{\"u}r Methoden, Systeme und Anwendungen der Messtechnik}, volume = {82}, journal = {Technisches Messen : tm ; Plattform f{\"u}r Methoden, Systeme und Anwendungen der Messtechnik}, number = {3}, publisher = {De Gruyter}, address = {Berlin}, issn = {0171-8096}, doi = {10.1515/teme-2014-0020}, pages = {156 -- 166}, year = {2015}, abstract = {In this contribution we present innovative methods for broadband and resonance-free sensing and emitting of ultrasound. The sensing method uses a polyethylene foil and a laser vibrometer as a broadband and resonance-free sound receiver. In general, this method enables absolute measurement of sound particle velocity and sound pressure in arbitrary, laser beam transparent liquids and gases with known density and sound velocity. The resonance-free emitting method is based on the electro-thermo-acoustic principle and enables, contrary to conventional ultrasound transducers, generation of arbitrary shaped acoustic signals without resonances and post-oscillations.}, language = {de} } @article{DaschewskiKreutzbruckPrager2015, author = {Daschewski, Maxim and Kreutzbruck, M. and Prager, J.}, title = {Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation}, series = {Ultrasonics}, volume = {63}, journal = {Ultrasonics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0041-624X}, doi = {10.1016/j.ultras.2015.06.008}, pages = {16 -- 22}, year = {2015}, abstract = {In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 mu m) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 mu m thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 mu m thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than +/- 6\%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can be applied for design and optimization of thermo-acoustic airborne ultrasound emitters.}, language = {en} } @phdthesis{Daschewski2016, author = {Daschewski, Maxim}, title = {Thermophony in real gases}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98866}, school = {Universit{\"a}t Potsdam}, pages = {79}, year = {2016}, abstract = {A thermophone is an electrical device for sound generation. The advantages of thermophones over conventional sound transducers such as electromagnetic, electrostatic or piezoelectric transducers are their operational principle which does not require any moving parts, their resonance-free behavior, their simple construction and their low production costs. In this PhD thesis, a novel theoretical model of thermophonic sound generation in real gases has been developed. The model is experimentally validated in a frequency range from 2 kHz to 1 MHz by testing more then fifty thermophones of different materials, including Carbon nano-wires, Titanium, Indium-Tin-Oxide, different sizes and shapes for sound generation in gases such as air, argon, helium, oxygen, nitrogen and sulfur hexafluoride. Unlike previous approaches, the presented model can be applied to different kinds of thermophones and various gases, taking into account the thermodynamic properties of thermophone materials and of adjacent gases, degrees of freedom and the volume occupied by the gas atoms and molecules, as well as sound attenuation effects, the shape and size of the thermophone surface and the reduction of the generated acoustic power due to photonic emission. As a result, the model features better prediction accuracy than the existing models by a factor up to 100. Moreover, the new model explains previous experimental findings on thermophones which can not be explained with the existing models. The acoustic properties of the thermophones have been tested in several gases using unique, highly precise experimental setups comprising a Laser-Doppler-Vibrometer combined with a thin polyethylene film which acts as a broadband and resonance-free sound-pressure detector. Several outstanding properties of the thermophones have been demonstrated for the first time, including the ability to generate arbitrarily shaped acoustic signals, a greater acoustic efficiency compared to conventional piezoelectric and electrostatic airborne ultrasound transducers, and applicability as powerful and tunable sound sources with a bandwidth up to the megahertz range and beyond. Additionally, new applications of thermophones such as the study of physical properties of gases, the thermo-acoustic gas spectroscopy, broad-band characterization of transfer functions of sound and ultrasound detection systems, and applications in non-destructive materials testing are discussed and experimentally demonstrated.}, language = {en} }