@article{DurandBentzKwiateketal.2020, author = {Durand, Virginie and Bentz, Stephan and Kwiatek, Grzegorz and Dresen, Georg and Wollin, Christopher and Heidbach, Oliver and Martinez-Garzon, Patricia and Cotton, Fabrice Pierre and Nurlu, Murat and Bohnhoff, Marco}, title = {A two-scale preparation phase preceded an M-w 5.8 earthquake in the sea of marmara offshore Istanbul, Turkey}, series = {Seismological research letters}, volume = {91}, journal = {Seismological research letters}, number = {6}, address = {Boulder}, issn = {0895-0695}, doi = {10.1785/0220200110}, pages = {3139 -- 3147}, year = {2020}, abstract = {We analyze the spatiotemporal evolution of seismicity during a sequence of moderate (an M-w 4.7 foreshock and M-w 5.8 mainshock) earthquakes occurring in September 2019 at the transition between a creeping and a locked segment of the North Anatolian fault in the central Sea of Marmara, northwest Turkey. To investigate in detail the seismicity evolution, we apply a matched-filter technique to continuous waveforms, thus reducing the magnitude threshold for detection. Sequences of foreshocks preceding the two largest events are clearly seen, exhibiting two different behaviors: a long-term activation of the seismicity along the entire fault segment and a short-term concentration around the epicenters of the large events. We suggest a two-scale preparation phase, with aseismic slip preparing the mainshock final rupture a few days before, and a cascade mechanism leading to the nucleation of the mainshock. Thus, our study shows a combination of seismic and aseismic slip during the foreshock sequence changing the strength of the fault, bringing it closer to failure.}, language = {en} } @article{BentzKwiatekMartinezGarzonetal.2020, author = {Bentz, Stephan and Kwiatek, Grzegorz and Martinez-Garzon, Patricia and Bohnhoff, Marco and Dresen, Georg}, title = {Seismic moment evolution during hydraulic stimulations}, series = {Geophysical research letters}, volume = {47}, journal = {Geophysical research letters}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL086185}, pages = {9}, year = {2020}, abstract = {Analysis of past and present stimulation projects reveals that the temporal evolution and growth of maximum observed moment magnitudes may be linked directly to the injected fluid volume and hydraulic energy. Overall evolution of seismic moment seems independent of the tectonic stress regime and is most likely governed by reservoir specific parameters, such as the preexisting structural inventory. Data suggest that magnitudes can grow either in a stable way, indicating the constant propagation of self-arrested ruptures, or unbound, for which the maximum magnitude is only limited by the size of tectonic faults and fault connectivity. Transition between the two states may occur at any time during injection or not at all. Monitoring and traffic light systems used during stimulations need to account for the possibility of unstable rupture propagation from the very beginning of injection by observing the entire seismicity evolution in near-real time and at high resolution for an immediate reaction in injection strategy. Plain Language Summary Predicting and controlling the size of earthquakes caused by fluid injection is currently the major concern of many projects associated with geothermal energy production. Here, we analyze the magnitude and seismic moment evolution with injection parameters for prominent geothermal and scientific projects to date. Evolution of seismicity seems to be largely independent of the tectonic stress background and seemingly depends on reservoir specific characteristics. We find that the maximum observed magnitudes relate linearly to the injected volume or hydraulic energy. A linear relation suggests stable growth of induced ruptures, as predicted by current models, or rupture growth may no longer depend on the stimulated volume but on tectonics. A system may change between the two states during the course of fluid injection. Close-by and high-resolution monitoring of seismic and hydraulic parameters in near-real time may help identify these fundamental changes in ample time to change injection strategy and manage maximum magnitudes.}, language = {en} } @article{BentzMartinezGarzonKwiateketal.2019, author = {Bentz, Stephan and Martinez-Garzon, Patricia and Kwiatek, Grzegorz and Dresen, Georg and Bohnhoff, Marco}, title = {Analysis of Microseismicity Framing M-L > 2.5 Earthquakes at The Geysers Geothermal Field, California}, series = {Journal of geophysical research : Solid earth}, volume = {124}, journal = {Journal of geophysical research : Solid earth}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2019JB017716}, pages = {8823 -- 8843}, year = {2019}, abstract = {Preparatory mechanisms accompanying or leading to nucleation of larger earthquakes have been observed at both laboratory and field scales, but conditions favoring the occurrence of observable preparatory processes are still largely unknown. In particular, it remains a matter of debate why some earthquakes occur spontaneously without noticeable precursors as opposed to events that are preceded by an extended failure process. In this study, we have generated new high-resolution seismicity catalogs framing the occurrence of 20 M-L > 2.5 earthquakes at The Geysers geothermal field in California. To this end, a seismicity catalog of the 11 days framing each large event was created. We selected 20 sequences sampling different hypocentral depths and hydraulic conditions within the field. Seismic activity and magnitude frequency distributions displayed by the different earthquake sequences are correlated with their location within the reservoir. Sequences located in the northwestern part of the reservoir show overall increased seismic activity and low b values, while the southeastern part is dominated by decreased seismic activity and higher b values. Periods of high injection coincide with high b values and vice versa. These observations potentially reflect varying differential and mean stresses and damage of the reservoir rocks across the field. About 50\% of analyzed sequences exhibit no change in seismicity rate in response to the large main event. However, we find complex waveforms at the onset of the main earthquake, suggesting that small ruptures spontaneously grow into or trigger larger events.}, language = {en} }