@phdthesis{Seelig2021, author = {Seelig, Stefan}, title = {Parafoveal processing of lexical information during reading}, doi = {10.25932/publishup-50874}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-508743}, school = {Universit{\"a}t Potsdam}, pages = {xi, 113}, year = {2021}, abstract = {During sentence reading the eyes quickly jump from word to word to sample visual information with the high acuity of the fovea. Lexical properties of the currently fixated word are known to affect the duration of the fixation, reflecting an interaction of word processing with oculomotor planning. While low level properties of words in the parafovea can likewise affect the current fixation duration, results concerning the influence of lexical properties have been ambiguous (Drieghe, Rayner, \& Pollatsek, 2008; Kliegl, Nuthmann, \& Engbert, 2006). Experimental investigations of such lexical parafoveal-on-foveal effects using the boundary paradigm have instead shown, that lexical properties of parafoveal previews affect fixation durations on the upcoming target words (Risse \& Kliegl, 2014). However, the results were potentially confounded with effects of preview validity. The notion of parafoveal processing of lexical information challenges extant models of eye movements during reading. Models containing serial word processing assumptions have trouble explaining such effects, as they usually couple successful word processing to saccade planning, resulting in skipping of the parafoveal word. Although models with parallel word processing are less restricted, in the SWIFT model (Engbert, Longtin, \& Kliegl, 2002) only processing of the foveal word can directly influence the saccade latency. Here we combine the results of a boundary experiment (Chapter 2) with a predictive modeling approach using the SWIFT model, where we explore mechanisms of parafoveal inhibition in a simulation study (Chapter 4). We construct a likelihood function for the SWIFT model (Chapter 3) and utilize the experimental data in a Bayesian approach to parameter estimation (Chapter 3 \& 4). The experimental results show a substantial effect of parafoveal preview frequency on fixation durations on the target word, which can be clearly distinguished from the effect of preview validity. Using the eye movement data from the participants, we demonstrate the feasibility of the Bayesian approach even for a small set of estimated parameters, by comparing summary statistics of experimental and simulated data. Finally, we can show that the SWIFT model can account for the lexical preview effects, when a mechanism for parafoveal inhibition is added. The effects of preview validity were modeled best, when processing dependent saccade cancellation was added for invalid trials. In the simulation study only the control condition of the experiment was used for parameter estimation, allowing for cross validation. Simultaneously the number of free parameters was increased. High correlations of summary statistics demonstrate the capabilities of the parameter estimation approach. Taken together, the results advocate for a better integration of experimental data into computational modeling via parameter estimation.}, language = {en} } @article{SchottervonderMalsburgLeinenger2019, author = {Schotter, Elizabeth Roye and von der Malsburg, Titus Raban and Leinenger, Mallorie}, title = {Forced Fixations, Trans-Saccadic Integration, and Word Recognition}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {45}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {4}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/xlm0000617}, pages = {677 -- 688}, year = {2019}, abstract = {Recent studies using the gaze-contingent boundary paradigm reported a reversed preview benefit- shorter fixations on a target word when an unrelated preview was easier to process than the fixated target (Schotter \& Leinenger, 2016). This is explained viaforeedfixatiotzs-short fixations on words that would ideally be skipped (because lexical processing has progressed enough) but could not be because saccade planning reached a point of no return. This contrasts with accounts of preview effects via trans-saccadic integration-shorter fixations on a target word when the preview is more similar to it (see Cutter. Drieghe, \& Liversedge, 2015). In addition, if the previewed word-not the fixated target-determines subsequent eye movements, is it also this word that enters the linguistic processing stream? We tested these accounts by having 24 subjects read 150 sentences in the boundary paradigm in which both the preview and target were initially plausible but later one, both, or neither became implausible, providing an opportunity to probe which one was linguistically encoded. In an intervening buffer region, both words were plausible, providing an opportunity to investigate trans-saccadic integration. The frequency of the previewed word affected progressive saccades (i.e.. forced fixations) as well as when transsaccadic integration failure increased regressions, but, only the implausibility of the target word affected semantic encoding. These data support a hybrid account of saccadic control (Reingold, Reichle. Glaholt, \& Sheridan, 2012) driven by incomplete (often parafoveal) word recognition, which occurs prior to complete (often foveal) word recognition.}, language = {en} } @article{YanZhouShuetal.2015, author = {Yan, Ming and Zhou, Wei and Shu, Hua and Kliegl, Reinhold}, title = {Perceptual span depends on font size during the reading of chinese sentences}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {41}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {1}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/a0038097}, pages = {209 -- 219}, year = {2015}, abstract = {The present study explored the perceptual span (i.e., the physical extent of an area from which useful visual information is extracted during a single fixation) during the reading of Chinese sentences in 2 experiments. In Experiment 1, we tested whether the rightward span can go beyond 3 characters when visually similar masks were used. Results showed that Chinese readers needed at least 4 characters to the right of fixation to maintain a normal reading behavior when visually similar masks were used and when characters were displayed in small fonts, indicating that the span is dynamically influenced by masking materials. In Experiments 2 and 3, we asked whether the perceptual span varies as a function of font size in spaced (German) and unspaced (Chinese) scripts. Results clearly suggest perceptual span depends on font size in Chinese, but we failed to find such evidence for German. We propose that the perceptual span in Chinese is flexible; it is strongly constrained by its language-specific properties such as high information density and lack of word spacing. Implications for saccade-target selection during the reading of Chinese sentences are discussed.}, language = {en} } @article{HohensteinKliegl2014, author = {Hohenstein, Sven and Kliegl, Reinhold}, title = {Semantic preview benefit during reading}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {40}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {1}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/a0033670}, pages = {166 -- 190}, year = {2014}, abstract = {Word features in parafoveal vision influence eye movements during reading. The question of whether readers extract semantic information from parafoveal words was studied in 3 experiments by using a gaze-contingent display change technique. Subjects read German sentences containing 1 of several preview words that were replaced by a target word during the saccade to the preview (boundary paradigm). In the 1st experiment the preview word was semantically related or unrelated to the target. Fixation durations on the target were shorter for semantically related than unrelated previews, consistent with a semantic preview benefit. In the 2nd experiment, half the sentences were presented following the rules of German spelling (i.e., previews and targets were printed with an initial capital letter), and the other half were presented completely in lowercase. A semantic preview benefit was obtained under both conditions. In the 3rd experiment, we introduced 2 further preview conditions, an identical word and a pronounceable nonword, while also manipulating the text contrast. Whereas the contrast had negligible effects, fixation durations on the target were reliably different for all 4 types of preview. Semantic preview benefits were greater for pretarget fixations closer to the boundary (large preview space) and, although not as consistently, for long pretarget fixation durations (long preview time). The results constrain theoretical proposals about eye movement control in reading.}, language = {en} } @article{LuoYanZhou2013, author = {Luo, Yingyi and Yan, Ming and Zhou, Xiaolin}, title = {Prosodic boundaries delay the processing of upcoming lexical information during silent sentence reading}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {39}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {3}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/a0029182}, pages = {915 -- 930}, year = {2013}, abstract = {Prosodic boundaries can be used to guide syntactic parsing in both spoken and written sentence comprehension, but it is unknown whether the processing of prosodic boundaries affects the processing of upcoming lexical information. In 3 eye-tracking experiments, participants read silently sentences that allow for 2 possible syntactic interpretations when there is no comma or other cue specifying which interpretation should be taken. In Experiments 1 and 2, participants heard a low-pass filtered auditory version of the sentence, which provided a prosodic boundary cue prior to each sentence. In Experiment 1, we found that the boundary cue helped syntactic disambiguation after the cue and led to longer fixation durations on regions right before the cue than on identical regions without prosodic boundary information. In Experiments 2 and 3, we used a gaze-contingent display-change paradigm to manipulate the parafoveal visibility of the first constituent character of the target word after the disambiguating position. Results of Experiment 2 showed that previewing the first character significantly reduced the reading time of the target word, but this preview benefit was greatly reduced when the prosodic boundary cue was introduced at this position. In Experiment 3, instead of the acoustic cues, a visually presented comma was inserted at the disambiguating position in each sentence. Results showed that the comma effect on lexical processing was essentially the same as the effect of prosodic boundary cue. These findings demonstrate that processing a prosodic boundary could impair the processing of parafoveal information during sentence reading.}, language = {en} } @phdthesis{Hohenstein2013, author = {Hohenstein, Sven}, title = {Eye movements and processing of semantic information in the parafovea during reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70363}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {When we read a text, we obtain information at different levels of representation from abstract symbols. A reader's ultimate aim is the extraction of the meaning of the words and the text. The reserach of eye movements in reading covers a broad range of psychological systems, ranging from low-level perceptual and motor processes to high-level cognition. Reading of skilled readers proceeds highly automatic, but is a complex phenomenon of interacting subprocesses at the same time. The study of eye movements during reading offers the possibility to investigate cognition via behavioral measures during the excercise of an everyday task. The process of reading is not limited to the directly fixated (or foveal) word but also extends to surrounding (or parafoveal) words, particularly the word to the right of the gaze position. This process may be unconscious, but parafoveal information is necessary for efficient reading. There is an ongoing debate on whether processing of the upcoming word encompasses word meaning (or semantics) or only superficial features. To increase the knowledge about how the meaning of one word helps processing another word, seven experiments were conducted. In these studies, words were exachanged during reading. The degree of relatedness between the word to the right of the currently fixated one and the word subsequently fixated was experimentally manipulated. Furthermore, the time course of the parafoveal extraction of meaning was investigated with two different approaches, an experimental one and a statistical one. As a major finding, fixation times were consistently lower if a semantically related word was presented compared to the presence of an unrelated word. Introducing an experimental technique that allows controlling the duration for which words are available, the time course of processing and integrating meaning was evaluated. Results indicated both facilitation and inhibition due to relatedness between the meanings of words. In a more natural reading situation, the effectiveness of the processing of parafoveal words was sometimes time-dependent and substantially increased with shorter distances between the gaze position and the word. Findings are discussed with respect to theories of eye-movement control. In summary, the results are more compatible with models of distributed word processing. The discussions moreover extend to language differences and technical issues of reading research.}, language = {en} } @phdthesis{Risse2011, author = {Risse, Sarah}, title = {Processing in the perceptual span : investigations with the n+2-boundary paradigm}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60414}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Cognitive psychology is traditionally interested in the interaction of perception, cognition, and behavioral control. Investigating eye movements in reading constitutes a field of research in which the processes and interactions of these subsystems can be studied in a well-defined environment. Thereby, the following questions are pursued: How much information is visually perceived during a fixation, how is processing achieved and temporally coordinated from visual letter encoding to final sentence comprehension, and how do such processes reflect on behavior such as the control of the eyes' movements during reading. Various theoretical models have been proposed to account for the specific eye-movement behavior in reading (for a review see Reichle, Rayner, \& Pollatsek, 2003). Some models are based on the idea of shifting attention serially from one word to the next within the sentence whereas others propose distributed attention allocating processing resources to more than one word at a time. As attention is assumed to drive word recognition processes one major difference between these models is that word processing must either occur in strict serial order, or that word processing is achieved in parallel. In spite of this crucial difference in the time course of word processing, both model classes perform well on explaining many of the benchmark effects in reading. In fact, there seems to be not much empirical evidence that challenges the models to a point at which their basic assumptions could be falsified. One issue often perceived as being decisive in the debate on serial and parallel word processing is how not-yet-fixated words to the right of fixation affect eye movements. Specifically, evidence is discussed as to what spatial extent such parafoveal words are previewed and how this influences current and subsequent word processing. Four experiments investigated parafoveal processing close to the spatial limits of the perceptual span. The present work aims to go beyond mere existence proofs of previewing words at such spatial distances. Introducing a manipulation that dissociates the sources of long-range preview effects, benefits and costs of parafoveal processing can be investigated in a single analysis and the differing impact is tracked across a three-word target region. In addition, the same manipulation evaluates the role of oculomotor error as the cause of non-local distributed effects. In this respect, the results contribute to a better understanding of the time course of word processing inside the perceptual span and attention allocation during reading.}, language = {en} }