@misc{MarweckiBaudisch2018, author = {Marwecki, Sebastian and Baudisch, Patrick}, title = {Scenograph}, series = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, journal = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-5948-1}, doi = {10.1145/3242587.3242648}, pages = {511 -- 520}, year = {2018}, abstract = {When developing a real-walking virtual reality experience, designers generally create virtual locations to fit a specific tracking volume. Unfortunately, this prevents the resulting experience from running on a smaller or differently shaped tracking volume. To address this, we present a software system called Scenograph. The core of Scenograph is a tracking volume-independent representation of real-walking experiences. Scenograph instantiates the experience to a tracking volume of given size and shape by splitting the locations into smaller ones while maintaining narrative structure. In our user study, participants' ratings of realism decreased significantly when existing techniques were used to map a 25m2 experience to 9m2 and an L-shaped 8m2 tracking volume. In contrast, ratings did not differ when Scenograph was used to instantiate the experience.}, language = {en} } @article{BaurHirschmuellerMuelleretal.2012, author = {Baur, Heiner and Hirschm{\"u}ller, Anja and M{\"u}ller, Steffen and Cassel, Michael and Mayer, Frank}, title = {Is EMG of the lower leg dependent on weekly running mileage?}, series = {International journal of sports medicine}, volume = {33}, journal = {International journal of sports medicine}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0031-1286250}, pages = {53 -- 57}, year = {2012}, abstract = {Neuromuscular activity of the lower leg is dependent on the task performed, speed of movement and gender. Whether training volume influences neuromuscular activity is not known. The EMG of physically active persons differing in running mileage was analysed to investigate this. 55 volunteers were allocated to a low (LM: < 30 km), intermediate (IM: > 30 km \& < 45 km) or high mileage (HM: > 45 km) group according to their weekly running volume. Neuromuscular activity of the lower leg was measured during running (3.33 m.s(-1)). Mean amplitude values for preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. Higher activity in the gastrocnemius group was observed in weight acceptance in LM compared to IM (+30\%) and HM (+25\%) but lower activity was present in the push-off for LM compared to IM and HM. For the peroneal muscle, differences were present in the push-off where HM showed increased activity compared to IM (+24\%) and LM (+60\%). The tibial muscle revealed slightly lower activity during preactivation for the high mileage runners. Neuromuscular activity differs during stance between the high and intermediate group compared to low mileage runners. Slight adaptations in neuromuscular activation indicate a more target-oriented activation strategy possibly due to repetitive training in runners with higher weekly mileage.}, language = {en} } @misc{ScheinerAbramsonBrodschneideretal.2013, author = {Scheiner, Ricarda and Abramson, Charles I. and Brodschneider, Robert and Crailsheim, Karl and Farina, Walter M. and Fuchs, Stefan and Gr{\"u}newald, Bernd and Hahshold, Sybille and Karrer, Marlene and Koeniger, Gudrun and K{\"o}niger, Niko and Menzel, Randolf and Mujagic, Samir and Radspieler, Gerald and Schmickl, Thomas and Schneider, Christof and Siegel, Adam J. and Szopek, Martina and Thenius, Ronald}, title = {Standard methods for behavioural studies of Apis mellifera}, series = {Journal of apicultural research}, volume = {52}, journal = {Journal of apicultural research}, number = {4}, publisher = {International Bee Research Association}, address = {Cardiff}, issn = {0021-8839}, doi = {10.3896/IBRA.1.52.4.04}, pages = {58}, year = {2013}, abstract = {In this BEEBOOK paper we present a set of established methods for quantifying honey bee behaviour. We start with general methods for preparing bees for behavioural assays. Then we introduce assays for quantifying sensory responsiveness to gustatory, visual and olfactory stimuli. Presentation of more complex behaviours like appetitive and aversive learning under controlled laboratory conditions and learning paradigms under free-flying conditions will allow the reader to investigate a large range of cognitive skills in honey bees. Honey bees are very sensitive to changing temperatures. We therefore present experiments which aim at analysing honey bee locomotion in temperature gradients. The complex flight behaviour of honey bees can be investigated under controlled conditions in the laboratory or with sophisticated technologies like harmonic radar or RFID in the field. These methods will be explained in detail in different sections. Honey bees are model organisms in behavioural biology for their complex yet plastic division of labour. To observe the daily behaviour of individual bees in a colony, classical observation hives are very useful. The setting up and use of typical observation hives will be the focus of another section. The honey bee dance language has important characteristics of a real language and has been the focus of numerous studies. We here discuss the background of the honey bee dance language and describe how it can be studied. Finally, the mating of a honey bee queen with drones is essential to survival of the entire colony. We here give detailed and structured information how the mating behaviour of drones and queens can be observed and experimentally manipulated. The ultimate goal of this chapter is to provide the reader with a comprehensive set of experimental protocols for detailed studies on all aspects of honey bee behaviour including investigation of pesticide and insecticide effects.}, language = {en} } @phdthesis{Wutke2016, author = {Wutke, Saskia}, title = {Tracing Changes in Space and Time}, school = {Universit{\"a}t Potsdam}, pages = {x, 84}, year = {2016}, abstract = {The horse is a fascinating animal symbolizing power, beauty, strength and grace. Among all the animal species domesticated the horse had the largest impact on the course of human history due to its importance for warfare and transportation. Studying the process of horse domestication contributes to the knowledge about the history of horses and even of our own species. Research based on molecular methods has increasingly focused on the genetic basis of horse domestication. Mitochondrial DNA (mtDNA) analyses of modern and ancient horses detected immense maternal diversity, probably due to many mares that contributed to the domestic population. However, mtDNA does not provide an informative phylogeographic structure. In contrast, Y chromosome analyses displayed almost complete uniformity in modern stallions but relatively high diversity in a few ancient horses. Further molecular markers that seem to be well suited to infer the domestication history of horses or genetic and phenotypic changes during this process are loci associated with phenotypic traits. This doctoral thesis consists of three different parts for which I analyzed various single nucleotide polymorphisms (SNPs) associated with coat color, locomotion or Y chromosomal variation of horses. These SNPs were genotyped in 350 ancient horses from the Chalcolithic (5,000 BC) to the Middle Ages (11th century). The distribution of the samples ranges from China to the Iberian Peninsula and Iceland. By applying multiplexed next-generation sequencing (NGS) I sequenced short amplicons covering the relevant positions: i) eight coat-color-associated mutations in six genes to deduce the coat color phenotype; ii) the so-called 'Gait-keeper' SNP in the DMRT3 gene to screen for the ability to amble; iii) 16 SNPs previously detected in ancient horses to infer the corresponding haplotype. Based on these data I investigated the occurrence and frequencies of alleles underlying the respective phenotypes as well as Y chromosome haplotypes at different times and regions. Also, selection coefficients for several Y chromosome lineages or phenotypes were estimated. Concerning coat color differences in ancient horses my work constitutes the most comprehensive study to date. I detected an increase of chestnut horses in the Middle Ages as well as differential selection for spotted and solid phenotypes over time which reflects changing human preferences. With regard to ambling horses, the corresponding allele was present in medieval English and Icelandic horses. Based on these results I argue that Norse settlers, who frequently invaded parts of Britain, brought ambling individuals to Iceland from the British Isles which can be regarded the origin of this trait. Moreover, these settlers appear to have selected for ambling in Icelandic horses. Relating to the third trait, the paternal diversity, these findings represent the largest ancient dataset of Y chromosome variation in non-humans. I proved the existence of several Y chromosome haplotypes in early domestic horses. The decline of Y chromosome variation coincides with the movement of nomadic peoples from the Eurasian steppes and later with different breeding practices in the Roman period. In conclusion, positive selection was estimated for several phenotypes/lineages in different regions or times which indicates that these were preferred by humans. Furthermore, I could successfully infer the distribution and dispersal of horses in association with human movements and actions. Thereby, a better understanding of the influence of people on the changing appearance and genetic diversity of domestic horses could be gained. My results also emphasize the close relationship of ancient genetics and archeology or history and that only in combination well-founded conclusions can be reached.}, language = {en} }