@misc{MiklashevskyFischerLindemann2022, author = {Miklashevsky, Alex and Fischer, Martin H. and Lindemann, Oliver}, title = {Spatial-numerical associations without a motor response? Grip force says 'Yes'}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {810}, issn = {1866-8364}, doi = {10.25932/publishup-57832}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-578324}, pages = {12}, year = {2022}, abstract = {In numerical processing, the functional role of Spatial-Numerical Associations (SNAs, such as the association of smaller numbers with left space and larger numbers with right space, the Mental Number Line hypothesis) is debated. Most studies demonstrate SNAs with lateralized responses, and there is little evidence that SNAs appear when no response is required. We recorded passive holding grip forces in no-go trials during number processing. In Experiment 1, participants performed a surface numerical decision task ("Is it a number or a letter?"). In Experiment 2, we used a deeper semantic task ("Is this number larger or smaller than five?"). Despite instruction to keep their grip force constant, participants' spontaneous grip force changed in both experiments: Smaller numbers led to larger force increase in the left than in the right hand in the numerical decision task (500-700 ms after stimulus onset). In the semantic task, smaller numbers again led to larger force increase in the left hand, and larger numbers increased the right-hand holding force. This effect appeared earlier (180 ms) and lasted longer (until 580 ms after stimulus onset). This is the first demonstration of SNAs with passive holding force. Our result suggests that (1) explicit motor response is not a prerequisite for SNAs to appear, and (2) the timing and strength of SNAs are task-dependent. (216 words).}, language = {en} } @article{MiklashevskyFischerLindemann2022, author = {Miklashevsky, Alex and Fischer, Martin H. and Lindemann, Oliver}, title = {Spatial-numerical associations without a motor response? Grip force says 'Yes'}, series = {Acta Psychologica}, volume = {231}, journal = {Acta Psychologica}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-6297}, doi = {10.1016/j.actpsy.2022.103791}, pages = {1 -- 17}, year = {2022}, abstract = {In numerical processing, the functional role of Spatial-Numerical Associations (SNAs, such as the association of smaller numbers with left space and larger numbers with right space, the Mental Number Line hypothesis) is debated. Most studies demonstrate SNAs with lateralized responses, and there is little evidence that SNAs appear when no response is required. We recorded passive holding grip forces in no-go trials during number processing. In Experiment 1, participants performed a surface numerical decision task ("Is it a number or a letter?"). In Experiment 2, we used a deeper semantic task ("Is this number larger or smaller than five?"). Despite instruction to keep their grip force constant, participants' spontaneous grip force changed in both experiments: Smaller numbers led to larger force increase in the left than in the right hand in the numerical decision task (500-700 ms after stimulus onset). In the semantic task, smaller numbers again led to larger force increase in the left hand, and larger numbers increased the right-hand holding force. This effect appeared earlier (180 ms) and lasted longer (until 580 ms after stimulus onset). This is the first demonstration of SNAs with passive holding force. Our result suggests that (1) explicit motor response is not a prerequisite for SNAs to appear, and (2) the timing and strength of SNAs are task-dependent. (216 words).}, language = {en} } @article{WernerRaabFischer2018, author = {Werner, Karsten and Raab, Markus and Fischer, Martin H.}, title = {Moving arms}, series = {Thinking \& Reasoning}, volume = {25}, journal = {Thinking \& Reasoning}, number = {2}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1354-6783}, doi = {10.1080/13546783.2018.1494630}, pages = {171 -- 191}, year = {2018}, abstract = {Embodied cognition postulates a bi-directional link between the human body and its cognitive functions. Whether this holds for higher cognitive functions such as problem solving is unknown. We predicted that arm movement manipulations performed by the participants could affect the problem-solving solutions. We tested this prediction in quantitative reasoning tasks that allowed two solutions to each problem (addition or subtraction). In two studies with healthy adults (N=53 and N=50), we found an effect of problem-congruent movements on problem solutions. Consistent with embodied cognition, sensorimotor information gained via right or left arm movements affects the solution in different types of problem-solving tasks.}, language = {en} } @article{SixtusFischerLindemann2017, author = {Sixtus, Elena and Fischer, Martin H. and Lindemann, Oliver}, title = {Finger posing primes number comprehension}, series = {Cognitive processing : international quarterly of cognitive science}, volume = {18}, journal = {Cognitive processing : international quarterly of cognitive science}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-4782}, doi = {10.1007/s10339-017-0804-y}, pages = {237 -- 248}, year = {2017}, abstract = {Canonical finger postures, as used in counting, activate number knowledge, but the exact mechanism for this priming effect is unclear. Here we dissociated effects of visual versus motor priming of number concepts. In Experiment 1, participants were exposed either to pictures of canonical finger postures (visual priming) or actively produced the same finger postures (motor priming) and then used foot responses to rapidly classify auditory numbers (targets) as smaller or larger than 5. Classification times revealed that manually adopted but not visually perceived postures primed magnitude classifications. Experiment 2 obtained motor priming of number processing through finger postures also with vocal responses. Priming only occurred through canonical and not through non-canonical finger postures. Together, these results provide clear evidence for motor priming of number knowledge. Relative contributions of vision and action for embodied numerical cognition and the importance of canonicity of postures are discussed.}, language = {en} } @article{MyachykovCangelosiEllisetal.2015, author = {Myachykov, Andriy and Cangelosi, Angelo and Ellis, Rob and Fischer, Martin H.}, title = {The oculomotor resonance effect in spatial-numerical mapping}, series = {Acta psychologica : international journal of psychonomics}, volume = {161}, journal = {Acta psychologica : international journal of psychonomics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0001-6918}, doi = {10.1016/j.actpsy.2015.09.006}, pages = {162 -- 169}, year = {2015}, abstract = {We investigated automatic Spatial-Numerical Association of Response Codes (SNARC) effect in auditory number processing. Two experiments continually measured spatial characteristics of ocular drift at central fixation during and after auditory number presentation. Consistent with the notion of a spatially oriented mental number line, we found spontaneous magnitude-dependent gaze adjustments, both with and without a concurrent saccadic task. This fixation adjustment (1) had a small-number/left-lateralized bias and (2) it was biphasic as it emerged for a short time around the point of lexical access and it received later robust representation around following number onset. This pattern suggests a two-step mechanism of sensorimotor mapping between numbers and space a first-pass bottom-up activation followed by a top-down and more robust horizontal SNARC Our results inform theories of number processing as well as simulation-based approaches to cognition by identifying the characteristics of an oculomotor resonance phenomenon. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{FischerShaki2014, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Spatial associations in numerical cognition-From single digits to arithmetic}, series = {The quarterly journal of experimental psychology}, volume = {67}, journal = {The quarterly journal of experimental psychology}, number = {8}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1747-0218}, doi = {10.1080/17470218.2014.927515}, pages = {1461 -- 1483}, year = {2014}, abstract = {The literature on spatial associations during number processing is dominated by the SNARC (spatial-numerical association of response codes) effect. We describe spatial biases found for single digits and pairs of numbers, first in the "original" speeded parity task and then extending the scope to encompass different tasks, a range of measures, and various populations. Then we review theoretical accounts before surveying the emerging evidence for similar spatial associations during mental arithmetic. We conclude that the mental number line hypothesis and an embodied approach are useful frameworks for further studies.}, language = {en} } @article{TschentscherHaukFischeretal.2012, author = {Tschentscher, Nadja and Hauk, Olaf and Fischer, Martin H. and Pulverm{\"u}ller, Friedemann}, title = {You can count on the motor cortex finger counting habits modulate motor cortex activation evoked by numbers}, series = {NeuroImage : a journal of brain function}, volume = {59}, journal = {NeuroImage : a journal of brain function}, number = {4}, publisher = {Elsevier}, address = {San Diego}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2011.11.037}, pages = {3139 -- 3148}, year = {2012}, abstract = {The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing.}, language = {en} } @article{Fischer2012, author = {Fischer, Martin H.}, title = {A hierarchical view of grounded, embodied, and situated numerical cognition}, series = {Cognitive processing : international quarterly of cognitive science}, volume = {13}, journal = {Cognitive processing : international quarterly of cognitive science}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-4782}, doi = {10.1007/s10339-012-0477-5}, pages = {S161 -- S164}, year = {2012}, abstract = {There is much recent interest in the idea that we represent our knowledge together with the sensory and motor features that were activated during its acquisition. This paper reviews the evidence for such "embodiment" in the domain of numerical cognition, a traditional stronghold of abstract theories of knowledge representation. The focus is on spatial-numerical associations, such as the SNARC effect (small numbers are associated with left space, larger numbers with right space). Using empirical evidence from behavioral research, I first describe sensory and motor biases induced by SNARC, thus identifying numbers as embodied concepts. Next, I propose a hierarchical relationship between grounded, embodied, and situated aspects of number knowledge. This hierarchical conceptualization helps to understand the variety of SNARC-related findings and yields testable predictions about numerical cognition. I report several such tests, ranging from cross-cultural comparisons of horizontal and vertical SNARC effects (Shaki and Fischer in J Exp Psychol Hum Percept Perform 38(3): 804-809, 2012) to motor cortical activation studies in adults with left- and right-hand counting preferences (Tschentscher et al. in NeuroImage 59: 3139-3148, 2012). It is concluded that the diagnostic features for each level of the proposed hierarchical knowledge representation, together with the spatial associations of numbers, make the domain of numerical knowledge an ideal testing ground for embodied cognition research.}, language = {en} } @article{ApelCangelosiEllisetal.2012, author = {Apel, Jens K. and Cangelosi, Angelo and Ellis, Rob and Goslin, Jeremy and Fischer, Martin H.}, title = {Object affordance influences instruction span}, series = {Experimental brain research}, volume = {223}, journal = {Experimental brain research}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-012-3251-0}, pages = {199 -- 206}, year = {2012}, abstract = {We measured memory span for assembly instructions involving objects with handles oriented to the left or right side. Right-handed participants remembered more instructions when objects' handles were spatially congruent with the hand used in forthcoming assembly actions. No such affordance-based memory benefit was found for left-handed participants. These results are discussed in terms of motor simulation as an embodied rehearsal mechanism.}, language = {en} }