@phdthesis{Weege2017, author = {Weege, Stefanie}, title = {Climatic drivers of retrogressive thaw slump activity and resulting sediment and carbon release to the nearshore zone of Herschel Island, Yukon Territory, Canada}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397947}, school = {Universit{\"a}t Potsdam}, pages = {163}, year = {2017}, abstract = {The Yukon Coast in Canada is an ice-rich permafrost coast and highly sensitive to changing environmental conditions. Retrogressive thaw slumps are a common thermoerosion feature along this coast, and develop through the thawing of exposed ice-rich permafrost on slopes and removal of accumulating debris. They contribute large amounts of sediment, including organic carbon and nitrogen, to the nearshore zone. The objective of this study was to 1) identify the climatic and geomorphological drivers of sediment-meltwater release, 2) quantify the amount of released meltwater, sediment, organic carbon and nitrogen, and 3) project the evolution of sediment-meltwater release of retrogressive thaw slumps in a changing future climate. The analysis is based on data collected over 18 days in July 2013 and 18 days in August 2012. A cut-throat flume was set up in the main sediment-meltwater channel of the largest retrogressive thaw slump on Herschel Island. In addition, two weather stations, one on top of the undisturbed tundra and one on the slump floor, measured incoming solar radiation, air temperature, wind speed and precipitation. The discharge volume eroding from the ice-rich permafrost and retreating snowbanks was measured and compared to the meteorological data collected in real time with a resolution of one minute. The results show that the release of sediment-meltwater from thawing of the ice-rich permafrost headwall is strongly related to snowmelt, incoming solar radiation and air temperature. Snowmelt led to seasonal differences, especially due to the additional contribution of water to the eroding sediment-meltwater from headwall ablation, lead to dilution of the sediment-meltwater composition. Incoming solar radiation and air temperature were the main drivers for diurnal and inter-diurnal fluctuations. In July (2013), the retrogressive thaw slump released about 25 000 m³ of sediment-meltwater, containing 225 kg dissolved organic carbon and 2050 t of sediment, which in turn included 33 t organic carbon, and 4 t total nitrogen. In August (2012), just 15 600 m³ of sediment-meltwater was released, since there was no additional contribution from snowmelt. However, even without the additional dilution, 281 kg dissolved organic carbon was released. The sediment concentration was twice as high as in July, with sediment contents of up to 457 g l-1 and 3058 t of sediment, including 53 t organic carbon and 5 t nitrogen, being released. In addition, the data from the 36 days of observations from Slump D were upscaled to cover the main summer season of 1 July to 31 August (62 days) and to include all 229 active retrogressive thaw slumps along the Yukon Coast. In total, all retrogressive thaw slumps along the Yukon Coast contribute a minimum of 1.4 Mio. m³ sediment-meltwater each thawing season, containing a minimum of 172 000 t sediment with 3119 t organic carbon, 327 t nitrogen and 17 t dissolved organic carbon. Therefore, in addition to the coastal erosion input to the Beaufort Sea, retrogressive thaw slumps additionally release 3 \% of sediment and 8 \% of organic carbon into the ocean. Finally, the future evolution of retrogressive thaw slumps under a warming scenario with summer air temperatures increasing by 2-3 °C by 2081-2100, would lead to an increase of 109-114\% in release of sediment-meltwater. It can be concluded that retrogressive thaw slumps are sensitive to climatic conditions and under projected future Arctic warming will contribute larger amounts of thawed permafrost material (including organic carbon and nitrogen) into the environment.}, language = {en} } @article{ReiterHeidbachSchmittetal.2014, author = {Reiter, Karsten and Heidbach, Oliver and Schmitt, Douglas and Haug, Kristine and Ziegler, Moritz O. and Moeck, Inga}, title = {A revised crustal stress orientation database for Canada}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {636}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2014.08.006}, pages = {111 -- 124}, year = {2014}, abstract = {The Canadian database on contemporary crustal stress has not been revised systematically in the past two decades. Here we present the results of our new compilation that contains 514 new data records for the orientation data of maximum compressive horizontal stress and 188 data records that were re-assessed. In total the Canadian stress database has now 1667 data records, which is an increase of about 45\%. From these data, a new Canadian Stress map as well as one for the Province of Alberta is presented. To analyse the stress pattern, we use the quasi median on the circle as a smoothing algorithm that generates a smoothed stress map of the maximum compressive horizontal stress orientation on a regular grid. The newly introduced quasi interquartile range on the circle estimates the spreading of the data and is used as a measure for the wave-length of the stress pattern. The result of the hybrid wavelength analysis confirms that long spatial wavelength stress patterns (>= 1000 km) exist in large areas in Canada. The observed stress pattern is transmitted through the intra-plate regions. The results reveal that shorter spatial wave length variation of the maximum compressive horizontal stress orientation of less than 200 km, prevails particularly in south-eastern and western Canada. Regional stress sources such as density contrasts, active fault systems, crustal structures, etc. might have a significant impact in these regions. In contrast to these variations, the observed stress pattern in the Alberta Basin is very homogeneous and mainly controlled by plate boundary forces and body forces. The influence of curvature of the Rocky Mountains salient in southern Alberta is minimal. The present-day horizontal stress orientations determined herein have important implications for the production of hydrocarbons and geothermal energy in the Alberta Basin. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @misc{KoechyWilson2004, author = {K{\"o}chy, Martin and Wilson, Scott D.}, title = {Variation in nitrogen deposition and available soil nitrogen in a forest-grassland ecotone in Canada}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5768}, year = {2004}, abstract = {Regional variation in nitrogen (N) deposition increases plant productivity and decreases species diversity, but landscape- or local-scale influences on N deposition are less well-known. Using ion-exchange resin, we measured variation of N deposition and soil N availability within Elk Island National Park in the ecotone between grassland and boreal forest in western Canada. The park receives regionally high amounts of atmospheric N deposition (22 kg ha⁻¹ yr⁻¹). N deposition was on average higher ton clayrich luvisols than on brunisols, and areas burned 1 - 15 years previously received more atmospheric N than unburned sites. We suggest that the effects of previous fires and soil type on deposition rate act through differences in canopy structure. The magnitude of these effects varied with the presence of ungulate grazers (bison, moose, elk) and vegetation type (forest, shrubland, grassland). Available soil N (ammonium and nitrate) was higher in burned than unburned sites in the absence of grazing, suggesting an effect of deposition. On grazed sites, differences between fire treatments were small, presumably because the removal of biomass by grazers reduced the effect of fire. Aspen invades native grassland in this region, and our results suggest that fire without grazing might reinforce the expansion of forest into grassland facilitated by N deposition.}, language = {en} }