@misc{SchmollSchurrWinkeletal.2006, author = {Schmoll, Tim and Schurr, Frank Martin and Winkel, W. and Lubjuhn, Thomas}, title = {Female extra-pair mating, fitness and genetic diversity: Expression in socially monogamous Coal Tits}, series = {Journal of ornithology}, volume = {147}, journal = {Journal of ornithology}, publisher = {Elsevier}, address = {New York}, issn = {0021-8375}, pages = {248 -- 248}, year = {2006}, language = {en} } @article{PagelAndersonCrameretal.2014, author = {Pagel, J{\"o}rn and Anderson, Barbara J. and Cramer, Wolfgang and Fox, Richard and Jeltsch, Florian and Roy, David B. and Thomas, Chris D. and Schurr, Frank Martin}, title = {Quantifying range-wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records}, series = {Methods in ecology and evolution : an official journal of the British Ecological Society}, volume = {5}, journal = {Methods in ecology and evolution : an official journal of the British Ecological Society}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2041-210X}, doi = {10.1111/2041-210X.12221}, pages = {751 -- 760}, year = {2014}, abstract = {2. We present a hierarchical model that integrates observations from multiple sources to estimate spatio-temporal abundance trends. The model links annual population densities on a spatial grid to both long-term count data and to opportunistic occurrence records from a citizen science programme. Specific observation models for both data types explicitly account for differences in data structure and quality. 3. We test this novel method in a virtual study with simulated data and apply it to the estimation of abundance dynamics across the range of a butterfly species (Pyronia tithonus) in Great Britain between 1985 and 2004. The application to simulated and real data demonstrates how the hierarchical model structure accommodates various sources of uncertainty which occur at different stages of the link between observational data and the modelled abundance, thereby it accounts for these uncertainties in the inference of abundance variations. 4. We show that by using hierarchical observation models that integrate different types of commonly available data sources, we can improve the estimates of variation in species abundances across space and time. This will improve our ability to detect regional trends and can also enhance the empirical basis for understanding range dynamics.}, language = {en} } @article{SvenningGravelHoltetal.2014, author = {Svenning, Jens-Christian and Gravel, Dominique and Holt, Robert D. and Schurr, Frank Martin and Thuiller, Wilfried and Muenkemueller, Tamara and Schiffers, Katja H. and Dullinger, Stefan and Edwards, Thomas C. and Hickler, Thomas and Higgins, Steven I. and Nabel, Julia E. M. S. and Pagel, J{\"o}rn and Normand, Signe}, title = {The influence of interspecific interactions on species range expansion rates}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {37}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {12}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2013.00574.x}, pages = {1198 -- 1209}, year = {2014}, language = {en} } @article{ThuillerMuenkemuellerSchiffersetal.2014, author = {Thuiller, Wilfried and Muenkemueller, Tamara and Schiffers, Katja H. and Georges, Damien and Dullinger, Stefan and Eckhart, Vincent M. and Edwards, Thomas C. and Gravel, Dominique and Kunstler, Georges and Merow, Cory and Moore, Kara and Piedallu, Christian and Vissault, Steve and Zimmermann, Niklaus E. and Zurell, Damaris and Schurr, Frank Martin}, title = {Does probability of occurrence relate to population dynamics?}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {37}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {12}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/ecog.00836}, pages = {1155 -- 1166}, year = {2014}, abstract = {Interestingly, relationships between demographic parameters and occurrence probability did not vary substantially across degrees of shade tolerance and regions. Although they were influenced by the uncertainty in the estimation of the demographic parameters, we found that r was generally negatively correlated with P-occ, while N, and for most regions K, was generally positively correlated with P-occ. Thus, in temperate forest trees the regions of highest occurrence probability are those with high densities but slow intrinsic population growth rates. The uncertain relationships between demography and occurrence probability suggests caution when linking species distribution and demographic models.}, language = {en} } @article{AlbertGrasseinSchurretal.2011, author = {Albert, C{\´e}cile H. and Grassein, Fabrice and Schurr, Frank Martin and Vieilledent, Ghislain and Violle, Cyrille}, title = {When and how should intraspecific variability be considered in trait-based plant ecology?}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {13}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {3}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2011.04.003}, pages = {217 -- 225}, year = {2011}, abstract = {Trait-based studies have become extremely common in plant ecology. Trait-based approaches often rely on the tacit assumption that intraspecific trait variability (ITV) is negligible compared to interspecific variability, so that species can be characterized by mean trait values. Yet, numerous recent studies have challenged this assumption by showing that ITV significantly affects various ecological processes. Accounting for ITV may thus strengthen trait-based approaches, but measuring trait values on a large number of individuals per species and site is not feasible. Therefore, it is important and timely to synthesize existing knowledge on ITV in order to (1) decide critically when ITV should be considered, and (2) establish methods for incorporating this variability. Here we propose a practical set of rules to identify circumstances under which ITV should be accounted for. We formulate a spatial trait variance partitioning hypothesis to highlight the spatial scales at which ITV cannot be ignored in ecological studies. We then refine a set of four consecutive questions on the research question, the spatial scale, the sampling design, and the type of studied traits, to determine case-by-case if a given study should quantify ITV and test its effects. We review methods for quantifying ITV and develop a step-by-step guideline to design and interpret simulation studies that test for the importance of ITV. Even in the absence of quantitative knowledge on ITV, its effects can be assessed by varying trait values within species within realistic bounds around the known mean values. We finish with a discussion of future requirements to further incorporate ITV within trait-based approaches. This paper thus delineates a general framework to account for ITV and suggests a direction towards a more quantitative trait-based ecology.}, language = {en} } @article{BuchmannSchurrNathanetal.2011, author = {Buchmann, Carsten M. and Schurr, Frank Martin and Nathan, Ran and Jeltsch, Florian}, title = {An allometric model of home range formation explains the structuring of animal communities exploiting heterogeneous resources}, series = {Oikos}, volume = {120}, journal = {Oikos}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2010.18556.x}, pages = {106 -- 118}, year = {2011}, abstract = {Understanding and predicting the composition and spatial structure of communities is a central challenge in ecology. An important structural property of animal communities is the distribution of individual home ranges. Home range formation is controlled by resource heterogeneity, the physiology and behaviour of individual animals, and their intra- and interspecific interactions. However, a quantitative mechanistic understanding of how home range formation influences community composition is still lacking. To explore the link between home range formation and community composition in heterogeneous landscapes we combine allometric relationships for physiological properties with an algorithm that selects optimal home ranges given locomotion costs, resource depletion and competition in a spatially-explicit individual-based modelling framework. From a spatial distribution of resources and an input distribution of animal body mass, our model predicts the size and location of individual home ranges as well as the individual size distribution (ISD) in an animal community. For a broad range of body mass input distributions, including empirical body mass distributions of North American and Australian mammals, our model predictions agree with independent data on the body mass scaling of home range size and individual abundance in terrestrial mammals. Model predictions are also robust against variation in habitat productivity and landscape heterogeneity. The combination of allometric relationships for locomotion costs and resource needs with resource competition in an optimal foraging framework enables us to scale from individual properties to the structure of animal communities in heterogeneous landscapes. The proposed spatially-explicit modelling concept not only allows for detailed investigation of landscape effects on animal communities, but also provides novel insights into the mechanisms by which resource competition in space shapes animal communities.}, language = {en} } @article{LachmuthDurkaSchurr2011, author = {Lachmuth, Susanne and Durka, Walter and Schurr, Frank Martin}, title = {Differentiation of reproductive and competitive ability in the invaded range of Senecio inaequidens the role of genetic Allee effects, adaptive and nonadaptive evolution}, series = {New phytologist : international journal of plant science}, volume = {192}, journal = {New phytologist : international journal of plant science}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0028-646X}, doi = {10.1111/j.1469-8137.2011.03808.x}, pages = {529 -- 541}, year = {2011}, abstract = {Genetic differentiation in the competitive and reproductive ability of invading populations can result from genetic Allee effects or r/K selection at the local or range-wide scale. However, the neutral relatedness of populations may either mask or falsely suggest adaptation and genetic Allee effects. In a common-garden experiment, we investigated the competitive and reproductive ability of invasive Senecio inaequidens populations that vary in neutral genetic diversity, population age and field vegetation cover. To account for population relatedness, we analysed the experimental results with 'animal models' adopted from quantitative genetics. Consistent with adaptive r/K differentiation at local scales, we found that genotypes from low-competition environments invest more in reproduction and are more sensitive to competition. By contrast, apparent effects of large-scale r/K differentiation and apparent genetic Allee effects can largely be explained by neutral population relatedness. Invading populations should not be treated as homogeneous groups, as they may adapt quickly to small-scale environmental variation in the invaded range. Furthermore, neutral population differentiation may strongly influence invasion dynamics and should be accounted for in analyses of common-garden experiments.}, language = {en} } @article{SarmentoBondMidgleyetal.2011, author = {Sarmento, Juliano Sarmento and Bond, William J. and Midgley, Guy F. and Rebelo, Anthony G. and Thuiller, Wilfried and Schurr, Frank Martin}, title = {Effects of harvesting flowers from shrubs on the persistence and abundance of wild shrub populations at multiple spatial extents}, series = {Conservation biology : the journal of the Society for Conservation Biology}, volume = {25}, journal = {Conservation biology : the journal of the Society for Conservation Biology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0888-8892}, doi = {10.1111/j.1523-1739.2010.01628.x}, pages = {73 -- 84}, year = {2011}, abstract = {Wildflower harvesting is an economically important activity of which the ecological effects are poorly understood. We assessed how harvesting of flowers affects shrub persistence and abundance at multiple spatial extents. To this end, we built a process-based model to examine the mean persistence and abundance of wild shrubs whose flowers are subject to harvest (serotinous Proteaceae in the South African Cape Floristic Region). First, we conducted a general sensitivity analysis of how harvesting affects persistence and abundance at nested spatial extents. For most spatial extents and combinations of demographic parameters, persistence and abundance of flowering shrubs decreased abruptly once harvesting rate exceeded a certain threshold. At larger extents, metapopulations supported higher harvesting rates before their persistence and abundance decreased, but persistence and abundance also decreased more abruptly due to harvesting than at smaller extents. This threshold rate of harvest varied with species' dispersal ability, maximum reproductive rate, adult mortality, probability of extirpation or local extinction, strength of Allee effects, and carrying capacity. Moreover, spatial extent interacted with Allee effects and probability of extirpation because both these demographic properties affected the response of local populations to harvesting more strongly than they affected the response of metapopulations. Subsequently, we simulated the effects of harvesting on three Cape Floristic Region Proteaceae species and found that these species reacted differently to harvesting, but their persistence and abundance decreased at low rates of harvest. Our estimates of harvesting rates at maximum sustainable yield differed from those of previous investigations, perhaps because researchers used different estimates of demographic parameters, models of population dynamics, and spatial extent than we did. Good demographic knowledge and careful identification of the spatial extent of interest increases confidence in assessments and monitoring of the effects of harvesting. Our general sensitivity analysis improved understanding of harvesting effects on metapopulation dynamics and allowed qualitative assessment of the probability of extirpation of poorly studied species.}, language = {en} } @misc{NathanHorvitzHeetal.2011, author = {Nathan, Ran and Horvitz, Nir and He, Yanping and Kuparinen, Anna and Schurr, Frank Martin and Katul, Gabriel G.}, title = {Spread of North American wind-dispersed trees in future environments}, series = {Ecology letters}, volume = {14}, journal = {Ecology letters}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1461-023X}, doi = {10.1111/j.1461-0248.2010.01573.x}, pages = {211 -- 219}, year = {2011}, abstract = {P>Despite ample research, understanding plant spread and predicting their ability to track projected climate changes remain a formidable challenge to be confronted. We modelled the spread of North American wind-dispersed trees in current and future (c. 2060) conditions, accounting for variation in 10 key dispersal, demographic and environmental factors affecting population spread. Predicted spread rates vary substantially among 12 study species, primarily due to inter-specific variation in maturation age, fecundity and seed terminal velocity. Future spread is predicted to be faster if atmospheric CO2 enrichment would increase fecundity and advance maturation, irrespective of the projected changes in mean surface windspeed. Yet, for only a few species, predicted wind-driven spread will match future climate changes, conditioned on seed abscission occurring only in strong winds and environmental conditions favouring high survival of the farthest-dispersed seeds. Because such conditions are unlikely, North American wind-dispersed trees are expected to lag behind the projected climate range shift.}, language = {en} } @article{SchleicherMeyerWiegandetal.2011, author = {Schleicher, Jana and Meyer, Katrin M. and Wiegand, Kerstin and Schurr, Frank Martin and Ward, David}, title = {Disentangling facilitation and seed dispersal from environmental heterogeneity as mechanisms generating associations between savanna plants}, series = {Journal of vegetation science}, volume = {22}, journal = {Journal of vegetation science}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1100-9233}, doi = {10.1111/j.1654-1103.2011.01310.x}, pages = {1038 -- 1048}, year = {2011}, abstract = {Question: How can we disentangle facilitation and seed dispersal from environmental heterogeneity as mechanisms causing spatial associations of plant species? Location: Semi-arid savanna in the Kimberley Thorn Bushveld, South Africa. Methods: We developed a two-step protocol for the statistical differentiation of association-promoting mechanisms in plants based on the Acacia erioloba-Grewia flava association. Individuals of the savanna shrub G. flava and the tree A. erioloba were mapped on four study plots. Disentangling the mechanism causing the association of G. flava and A. erioloba involved tests of three spatial and one non-spatial null model. The spatial null models include homogeneous and heterogeneous Poisson processes for spatial randomness based on the bivariate spatial point patterns of the four plots. With the non-spatial analysis, we determined the relationship between the canopy diameter of A. erioloba trees and presence or absence of G. flava shrubs in the tree understorey to find whether shrub presence requires a minimum tree canopy diameter. Results: We first showed a significant positive spatial association of the two species. Thereafter, the non-spatial analysis supported an exclusion of environmental heterogeneity as the sole cause of this positive association. We found a minimum tree size under which no G. flava shrubs occurred. Conclusions: Our two-step analysis showed that it is unlikely that heterogeneous environmental conditions caused the spatial association of A. erioloba and G. flava. Instead, this association may have been caused by seed dispersal and/or facilitation (e.g. caused by hydraulic lift and/or nitrogen fixation by the host tree).}, language = {en} }