@article{GleichSpittaButleretal.2020, author = {Gleich, Tobias and Spitta, Gianna and Butler, Oisin and Zacharias, Kristin and Aydin, Semiha and Sebold, Miriam Hannah and Garbusow, Maria and Rapp, Michael Armin and Schubert, Florian and Buchert, Ralph and Heinz, Andreas and Gallinat, J{\"u}rgen}, title = {Dopamine D2/3 receptor availability in alcohol use disorder and individuals at high risk}, series = {Addiction Biology}, volume = {26}, journal = {Addiction Biology}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1369-1600}, doi = {10.1111/adb.12915}, pages = {1 -- 10}, year = {2020}, abstract = {Alcohol use disorder (AUD) is the most common substance use disorder worldwide. Although dopamine-related findings were often observed in AUD, associated neurobiological mechanisms are still poorly understood. Therefore, in the present study, we investigate D2/3 receptor availability in healthy participants, participants at high risk (HR) to develop addiction (not diagnosed with AUD), and AUD patients in a detoxified stage, applying F-18-fallypride positron emission tomography (F-18-PET). Specifically, D2/3 receptor availability was investigated in (1) 19 low-risk (LR) controls, (2) 19 HR participants, and (3) 20 AUD patients after alcohol detoxification. Quality and severity of addiction were assessed with clinical questionnaires and (neuro)psychological tests. PET data were corrected for age of participants and smoking status. In the dorsal striatum, we observed significant reductions of D2/3 receptor availability in AUD patients compared with LR participants. Further, receptor availability in HR participants was observed to be intermediate between LR and AUD groups (linearly decreasing). Still, in direct comparison, no group difference was observed between LR and HR groups or between HR and AUD groups. Further, the score of the Alcohol Dependence Scale (ADS) was inversely correlated with D2/3 receptor availability in the combined sample. Thus, in line with a dimensional approach, striatal D2/3 receptor availability showed a linear decrease from LR participants to HR participants to AUD patients, which was paralleled by clinical measures. Our study shows that a core neurobiological feature in AUD seems to be detectable in an early, subclinical state, allowing more individualized alcohol prevention programs in the future.}, language = {en} } @article{NagakuraSchubertWagneretal.2022, author = {Nagakura, Toshiki and Schubert, Florian and Wagner, Dirk and Kallmeyer, Jens}, title = {Biological sulfate reduction in deep subseafloor sediment of Guaymas Basin}, series = {Frontiers in microbiology}, volume = {13}, journal = {Frontiers in microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, organization = {IODP Exp 385 Shipboard Sci Party}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.845250}, pages = {12}, year = {2022}, abstract = {Sulfate reduction is the quantitatively most important process to degrade organic matter in anoxic marine sediment and has been studied intensively in a variety of settings. Guaymas Basin, a young marginal ocean basin, offers the unique opportunity to study sulfate reduction in an environment characterized by organic-rich sediment, high sedimentation rates, and high geothermal gradients (100-958 degrees C km(-1)). We measured sulfate reduction rates (SRR) in samples taken during the International Ocean Discovery Program (IODP) Expedition 385 using incubation experiments with radiolabeled (SO42-)-S-35 carried out at in situ pressure and temperature. The highest SRR (387 nmol cm(-3) d(-1)) was recorded in near-surface sediments from Site U1548C, which had the steepest geothermal gradient (958 degrees C km(-1)). At this site, SRR were generally over an order of magnitude higher than at similar depths at other sites (e.g., 387-157 nmol cm(-3) d(-1) at 1.9 mbsf from Site U1548C vs. 46-1.0 nmol cm(-3) d(-1) at 2.1 mbsf from Site U1552B). Site U1546D is characterized by a sill intrusion, but it had already reached thermal equilibrium and SRR were in the same range as nearby Site U1545C, which is minimally affected by sills. The wide temperature range observed at each drill site suggests major shifts in microbial community composition with very different temperature optima but awaits confirmation by molecular biological analyses. At the transition between the mesophilic and thermophilic range around 40 degrees C-60 degrees C, sulfate-reducing activity appears to be decreased, particularly in more oligotrophic settings, but shows a slight recovery at higher temperatures.}, language = {en} } @article{SeboldSpittaGleichetal.2019, author = {Sebold, Miriam Hannah and Spitta, G. and Gleich, T. and Dembler-Stamm, T. and Butler, Oisin and Zacharias, Kristin and Aydin, S. and Garbusow, Maria and Rapp, Michael Armin and Schubert, Florian and Buchert, Ralph and Gallinat, J{\"u}rgen and Heinz, A.}, title = {Stressful life events are associated with striatal dopamine receptor availability in alcohol dependence}, series = {Journal of neural transmission}, volume = {126}, journal = {Journal of neural transmission}, number = {9}, publisher = {Springer}, address = {Wien}, issn = {0300-9564}, doi = {10.1007/s00702-019-01985-2}, pages = {1127 -- 1134}, year = {2019}, abstract = {Stress plays a key role in modulating addictive behavior and can cause relapse following periods of abstinence. Common effects of stress and alcohol on the dopaminergic system have been suggested, although the precise mechanisms are unclear. Here, we investigated 20 detoxified alcohol-dependent patients and 19 matched healthy controls and assessed striatal D2/D3 availability using [F-18]-fallypride positron emission tomography and stressful life events. We found a strong association between striatal D2/D3 availability and stress in patients, but not in healthy controls. Interestingly, we found increased D2/D3 receptor availability in patients with higher stress levels. This mirrors complex interactions between stress and alcohol intake in animal studies and emphasizes the importance to investigate stress exposure in neurobiological studies of addiction.}, language = {en} } @article{SchellerKirsteinSchubertetal.1993, author = {Scheller, Frieder W. and Kirstein, Dieter and Schubert, Florian and Pfeiffer, Dorothea and McNeil, C. J.}, title = {Enzymes in electrochemical biosensors}, year = {1993}, language = {en} } @article{WollenbergerSchubertPfeifferetal.1993, author = {Wollenberger, Ursula and Schubert, Florian and Pfeiffer, Dorothea and Scheller, Frieder W.}, title = {Enhancing biosensor performance using multienzyme systems}, year = {1993}, language = {en} } @article{PfeifferSchellerSchubertetal.1993, author = {Pfeiffer, Dorothea and Scheller, Frieder W. and Schubert, Florian and Setz, K.}, title = {Amperometric enzyme electrodes for lactate and glucose determinations in highly diluted and undiluted media}, year = {1993}, language = {en} } @article{SchellerWollenbergerSchubertetal.1993, author = {Scheller, Frieder W. and Wollenberger, Ursula and Schubert, Florian and Pfeiffer, Dorothea and Markower, Alexander and McNeil, C. J.}, title = {Multienzyme biosensors : coupled enzyme reactions and enzyme activation}, year = {1993}, language = {en} } @article{SchellerPfeifferSchubertetal.1995, author = {Scheller, Frieder W. and Pfeiffer, Dorothea and Schubert, Florian and Wollenberger, Ursula}, title = {Enzyme - based electrodes}, year = {1995}, language = {en} } @article{SchellerSchubertBier1995, author = {Scheller, Frieder W. and Schubert, Florian and Bier, Frank Fabian}, title = {Vom Biosensor zur Nanobiotechnologie}, year = {1995}, language = {de} } @article{WollenbergerSchubertPfeifferetal.1996, author = {Wollenberger, Ursula and Schubert, Florian and Pfeiffer, Dorothea and Scheller, Frieder W.}, title = {Recycling sensors based on kinases : proceedings of Mosbach Symposion on Biochemical Technology}, year = {1996}, language = {en} }