@phdthesis{Hunke2015, author = {Hunke, Philip Paul}, title = {The Brazilian Cerrado: ecohydrological assessment of water and soil degradation in heavily modified meso-scale catchments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85110}, school = {Universit{\"a}t Potsdam}, pages = {xi, 124}, year = {2015}, abstract = {The Brazilian Cerrado is recognised as one of the most threatened biomes in the world, as the region has experienced a striking change from natural vegetation to intense cash crop production. The impacts of rapid agricultural expansion on soil and water resources are still poorly understood in the region. Therefore, the overall aim of the thesis is to improve our understanding of the ecohydrological processes causing water and soil degradation in the Brazilian Cerrado. I first present a metaanalysis to provide quantitative evidence and identifying the main impacts of soil and water alterations resulting from land use change. Second, field studies were conducted to (i) examine the effects of land use change on soils of natural cerrado transformed to common croplands and pasture and (ii) indicate how agricultural production affects water quality across a meso-scale catchment. Third, the ecohydrological process-based model SWAT was tested with simple scenario analyses to gain insight into the impacts of land use and climate change on the water cycling in the upper S{\~a}o Louren{\c{c}}o catchment which experienced decreasing discharges in the last 40 years. Soil and water quality parameters from different land uses were extracted from 89 soil and 18 water studies in different regions across the Cerrado. Significant effects on pH, bulk density and available P and K for croplands and less-pronounced effects on pastures were evident. Soil total N did not differ between land uses because most of the cropland sites were N-fixing soybean cultivations, which are not artificially fertilized with N. By contrast, water quality studies showed N enrichment in agricultural catchments, indicating fertilizer impacts and potential susceptibility to eutrophication. Regardless of the land use, P is widely absent because of the high-fixing capacities of deeply weathered soils and the filtering capacity of riparian vegetation. Pesticides, however, were consistently detected throughout the entire aquatic system. In several case studies, extremely high-peak concentrations exceeded Brazilian and EU water quality limits, which pose serious health risks. My field study revealed that land conversion caused a significant reduction in infiltration rates near the soil surface of pasture (-96 \%) and croplands (-90 \% to -93 \%). Soil aggregate stability was significantly reduced in croplands than in cerrado and pasture. Soybean crops had extremely high extractable P (80 mg kg-1), whereas pasture N levels declined. A snapshot water sampling showed strong seasonality in water quality parameters. Higher temperature, oxi-reduction potential (ORP), NO2-, and very low oxygen concentrations (<5 mg•l-1) and saturation (<60 \%) were recorded during the rainy season. By contrast, remarkably high PO43- concentrations (up to 0.8 mg•l-1) were measured during the dry season. Water quality parameters were affected by agricultural activities at all sampled sub-catchments across the catchment, regardless of stream characteristic. Direct NO3- leaching appeared to play a minor role; however, water quality is affected by topsoil fertiliser inputs with impact on small low order streams and larger rivers. Land conversion leaving cropland soils more susceptible to surface erosion by increased overland flow events. In a third study, the field data were used to parameterise SWAT. The model was tested with different input data and calibrated in SWAT-CUP using the SUFI-2 algorithm. The model was judged reliable to simulate the water balance in the Cerrado. A complete cerrado, pasture and cropland cover was used to analyse the impact of land use on water cycling as well as climate change projections (2039-2058) according to the projections of the RCP 8.5 scenario. The actual evapotranspiration (ET) for the cropland scenario was higher compared to the cerrado cover (+100 mm a-1). Land use change scenarios confirmed that deforestation caused higher annual ET rates explaining partly the trend of decreased streamflow. Taking all climate change scenarios into account, the most likely effect is a prolongation of the dry season (by about one month), with higher peak flows in the rainy season. Consequently, potential threats for crop production with lower soil moisture and increased erosion and sediment transport during the rainy season are likely and should be considered in adaption plans. From the three studies of the thesis I conclude that land use intensification is likely to seriously limit the Cerrado's future regarding both agricultural productivity and ecosystem stability. Because only limited data are available for the vast biome, we recommend further field studies to understand the interaction between terrestrial and aquatic systems. This thesis may serve as a valuable database for integrated modelling to investigate the impact of land use and climate change on soil and water resources and to test and develop mitigation measures for the Cerrado in the future.}, language = {en} } @phdthesis{Rohrmann2015, author = {Rohrmann, Alexander}, title = {The role of wind and water in shaping earth's plateaus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77938}, school = {Universit{\"a}t Potsdam}, pages = {XXV, 157}, year = {2015}, abstract = {The overarching goal of this dissertation is to provide a better understanding of the role of wind and water in shaping Earth's Cenozoic orogenic plateaus - prominent high-elevation, low relief sectors in the interior of Cenozoic mountain belts. In particular, the feedbacks between surface uplift, the build-up of topography and ensuing changes in precipitation, erosion, and vegetation patterns are addressed in light of past and future climate change. Regionally, the study focuses on the two world's largest plateaus, the Altiplano-Puna Plateau of the Andes and Tibetan Plateau, both characterized by average elevations of >4 km. Both plateaus feature high, deeply incised flanks with pronounced gradients in rainfall, vegetation, hydrology, and surface processes. These characteristics are rooted in the role of plateaus to act as efficient orographic barriers to rainfall and to force changes in atmospheric flow. The thesis examines the complex topics of tectonic and climatic forcing of the surface-process regime on three different spatial and temporal scales: (1) bedrock wind-erosion rates are quantified in the arid Qaidam Basin of NW Tibet over millennial timescales using cosmogenic radionuclide dating; (2) present-day stable isotope composition in rainfall is examined across the south-central Andes in three transects between 22° S and 28° S; these data are modeled and assessed with remotely sensed rainfall data of the Tropical Rainfall Measuring Mission and the Moderate Resolution Imaging Spectroradiometer; (3) finally, a 2.5-km-long Mio-Pliocene sedimentary record of the intermontane Angastaco Basin (25°45' S, 66°00' W) is presented in the context of hydrogen and carbon compositions of molecular lipid biomarker, and oxygen and carbon isotopes obtained from pedogenic carbonates; these records are compared to other environmental proxies, including hydrated volcanic glass shards from volcanic ashes intercalated in the sedimentary strata. There are few quantitative estimates of eolian bedrock-removal rates from arid, low relief landscapes. Wind-erosion rates from the western Qaidam Basin based on cosmogenic 10Be measurements document erosion rates between 0.05 to 0.4 mm/yr. This finding indicates that in arid environments with strong winds, hyperaridity, exposure of friable strata, and ongoing rock deformation and uplift, wind erosion can outpace fluvial erosion. Large eroded sediment volumes within the Qaidam Basin and coeval dust deposition on the Chinese Loess plateau, exemplify the importance of dust production within arid plateau environments for marine and terrestrial depositional processes, but also health issues and fertilization of soils. In the south-central Andes, the analysis of 234 stream-water samples for oxygen and hydrogen reveals that areas experiencing deep convective storms do not show the commonly observed patterns of isotopic fractionation and the expected co-varying relationships between oxygen and hydrogen with increasing elevation. These convective storms are formed over semi-arid intermontane basins in the transition between the broken foreland of the Sierras Pampeanas, the Eastern Cordillera, and the Puna Plateau in the interior of the orogen. Here, convective rainfall dominates the precipitation budget and no systematic stable isotope-elevation relationship exists. Regions to the north, in the transition between the broken foreland and the Subandean foreland fold-and-thrust belt, the impact of convection is subdued, with lower degrees of storminess and a stronger expected isotope-elevation relationship. This finding of present-day fractionation trends of meteoric water is of great importance for paleoenvironmental studies in attempts to use stable isotope relationships in the reconstruction of paleoelevations. The third part of the thesis focuses on the paleohydrological characteristics of the Mio-Pliocene (10-2 Ma) Angastaco Basin sedimentary record, which reveals far-reaching environmental changes during Andean uplift and orographic barrier formation. A precipitation- evapotranspiration record identifies the onset of a precipitation regime related to the South American Low Level Jet at this latitude after 9 Ma. Humid foreland conditions existed until 7 Ma, followed by orographic barrier uplift to the east of the present-day Angastaco Basin. This was superseded by rapid (~0.5 Myr) aridification in an intermontane basin, highlighting the effects of eastward-directed deformation. A transition in vegetation cover from a humid C3 forest ecosystem to semi-arid C4-dominated vegetation was coeval with continued basin uplift to modern elevations.}, language = {en} }