@article{BeisebekovSerikpayevaZhumagalievaetal.2015, author = {Beisebekov, Madiar Maratovich and Serikpayeva, Saniya B. and Zhumagalieva, Shynar Nurlanovna and Beisebekov, Marat Kianovich and Abilov, Zharylkasyn Abduachitovich and Kosmella, Sabine and Koetz, Joachim}, title = {Interactions of bentonite clay in composite gels of non-ionic polymers with cationic surfactants and heavy metal ions}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {293}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-014-3463-x}, pages = {633 -- 639}, year = {2015}, abstract = {Chemically cross-linked composite gels based on bentonite clay from Manyrak deposit (Kazakhstan Republic) and nonionic polymers, i.e., poly(hydroxyethylacrylate) and poly(acrylamide), were polymerized in situ after preliminary intercalation of monomers in an aqueous suspension of bentonite clay. By means of cryo-scanning electron microscopy, it was shown that bentonite clay is well incorporated into the gel network structure with pore sizes up to 1.5 mu m. The intercalated bentonite clay can adsorb cationic surfactants as well as heavy metal ions due to electrostatic interactions. Conductometric and surface tension measurements indicate not only the adsorption of surfactants and heavy metals inside the hydrogel, but also the displacement of the critical micellization concentration (CMC) of the surfactants.}, language = {en} } @article{KovachKosmellaPrietzeletal.2015, author = {Kovach, Ildyko and Kosmella, Sabine and Prietzel, Claudia Christina and Bagdahn, Christian and Koetz, Joachim}, title = {Nano-porous calcium phosphate balls}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {132}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2015.05.021}, pages = {246 -- 252}, year = {2015}, abstract = {By dropping a NaH2PO4 center dot H2O precursor solution to a CaCl2 solution at 90 degrees C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin chitosan water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600 degrees C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair. (c) 2015 Elsevier B.V. All rights reserved.}, language = {en} }