@article{KellermannBubeckKundelaetal.2016, author = {Kellermann, Patric and Bubeck, Philip and Kundela, Guenther and Dosio, Alessandro and Thieken, Annegret}, title = {Frequency Analysis of Critical Meteorological Conditions in a Changing ClimateAssessing Future Implications for Railway Transportation in Austria}, series = {Climate : open access journal}, volume = {4}, journal = {Climate : open access journal}, publisher = {MDPI}, address = {Basel}, issn = {2225-1154}, doi = {10.3390/cli4020025}, pages = {914 -- 931}, year = {2016}, abstract = {Meteorological extreme events have great potential for damaging railway infrastructure and posing risks to the safety of train passengers. In the future, climate change will presumably have serious implications on meteorological hazards in the Alpine region. Hence, attaining insights on future frequencies of meteorological extremes with relevance for the railway operation in Austria is required in the context of a comprehensive and sustainable natural hazard management plan of the railway operator. In this study, possible impacts of climate change on the frequencies of so-called critical meteorological conditions (CMCs) between the periods 1961-1990 and 2011-2040 are analyzed. Thresholds for such CMCs have been defined by the railway operator and used in its weather monitoring and early warning system. First, the seasonal climate change signals for air temperature and precipitation in Austria are described on the basis of an ensemble of high-resolution Regional Climate Model (RCM) simulations for Europe. Subsequently, the RCM-ensemble was used to investigate changes in the frequency of CMCs. Finally, the sensitivity of results is analyzed with varying threshold values for the CMCs. Results give robust indications for an all-season air temperature rise, but show no clear tendency in average precipitation. The frequency analyses reveal an increase in intense rainfall events and heat waves, whereas heavy snowfall and cold days are likely to decrease. Furthermore, results indicate that frequencies of CMCs are rather sensitive to changes of thresholds. It thus emphasizes the importance to carefully define, validate, andif neededto adapt the thresholds that are used in the weather monitoring and warning system of the railway operator. For this, continuous and standardized documentation of damaging events and near-misses is a pre-requisite.}, language = {en} } @article{Schneider2016, author = {Schneider, Birgit}, title = {Burning worlds of cartography: a critical approach to climate cosmograms of the Anthropocene}, series = {Geo : geography and environment}, volume = {3}, journal = {Geo : geography and environment}, publisher = {Wiley}, address = {Hoboken}, issn = {2054-4049}, doi = {10.1002/geo2.27}, pages = {15}, year = {2016}, abstract = {Climate science today makes use of a variety of red globes to explore and communicate findings. These transform the iconography which informs this image: the idealised, even mythical vision of the blue, vulnerable and perfect marble is impaired by the application of the colours yellow and red. Since only predictions that employ a lot of red seem to exist, spectators are confronted with the message that the future Earth that might turn out as envisaged here is undesirable. Here intuitively powerful narrations of the end of the world may connect. By employing methods of art history and visual analysis, and building on examples from current Intergovernmental Panel on Climate Change reports and future scenario maps, this article explores how burning world images bear - intentionally or not - elements of horror and shock. My question explored here is as follows: should 'burning world' images be understood as a new and powerful cosmology?}, language = {en} } @article{DiCapuaCoumou2016, author = {Di Capua, Giorgia and Coumou, Dim}, title = {Changes in meandering of the Northern Hemisphere circulation}, series = {Environmental research letters}, volume = {11}, journal = {Environmental research letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/11/9/094028}, pages = {9}, year = {2016}, abstract = {Strong waves in the mid-latitude circulation have been linked to extreme surface weather and thus changes in waviness could have serious consequences for society. Several theories have been proposed which could alter waviness, including tropical sea surface temperature anomalies or rapid climate change in the Arctic. However, so far it remains unclear whether any changes in waviness have actually occurred. Here we propose a novel meandering index which captures the maximum waviness in geopotential height contours at any given day, using all information of the full spatial position of each contour. Data are analysed on different time scale (from daily to 11 day running means) and both on hemispheric and regional scales. Using quantile regressions, we analyse how seasonal distributions of this index have changed over 1979-2015. The most robust changes are detected for autumn which has seen a pronounced increase in strongly meandering patterns at the hemispheric level as well as over the Eurasian sector. In summer for both the hemisphere and the Eurasian sector, significant downward trends in meandering are detected on daily timescales which is consistent with the recently reported decrease in summer storm track activity. The American sector shows the strongest increase in meandering in the warm season: in particular for 11 day running mean data, indicating enhanced amplitudes of quasi-stationary waves. Our findings have implications for both the occurrence of recent cold spells and persistent heat waves in the mid-latitudes.}, language = {en} } @phdthesis{Roers2016, author = {Roers, Michael}, title = {Methoden zur Dynamisierung von Klimafolgenanalysen im Elbegebiet}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98844}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 141}, year = {2016}, abstract = {Die Elbe und ihr Einzugsgebiet sind vom Klimawandel betroffen. Um die Wirkkette von projizierten Klimaver{\"a}nderungen auf den Wasserhaushalt und die daraus resultierenden N{\"a}hrstoffeintr{\"a}ge und -frachten f{\"u}r große Einzugsgebiete wie das der Elbe zu analysieren, k{\"o}nnen integrierte Umweltmodellsysteme eingesetzt werden. Fallstudien, die mit diesen Modellsystemen ad hoc durchgef{\"u}hrt werden, repr{\"a}sentieren den Istzustand von Modellentwicklungen und -unsicherheiten und sind damit statisch. Diese Arbeit beschreibt den Einstieg in die Dynamisierung von Klimafolgenanalysen im Elbegebiet. Dies umfasst zum einen eine Plausibilit{\"a}tspr{\"u}fung von Auswirkungsrechnungen, die mit Szenarien des statistischen Szenariengenerators STARS durchgef{\"u}hrt wurden, durch den Vergleich mit den Auswirkungen neuerer Klimaszenarien aus dem ISI-MIP Projekt, die dem letzten Stand der Klimamodellierung entsprechen. Hierf{\"u}r wird ein integriertes Modellsystem mit "eingefrorenem Entwicklungsstand" verwendet. Die Klimawirkungsmodelle bleiben dabei unver{\"a}ndert. Zum anderen wird ein Bestandteil des integrierten Modellsystems - das {\"o}kohydrologische Modell SWIM - zu einer "live"-Version weiterentwickelt. Diese wird durch punktuelle Testung an langj{\"a}hrigen Versuchsreihen eines Lysimeterstandorts sowie an aktuellen Abflussreihen validiert und verbessert. Folgende Forschungsfragen werden bearbeitet: (i) Welche Effekte haben unterschiedliche Klimaszenarien auf den Wasserhaushalt im Elbegebiet und ist eine Neubewertung der Auswirkung des Klimawandels auf den Wasserhaushalt notwendig?, (ii) Was sind die Auswirkungen des Klimawandels auf die N{\"a}hrstoffeintr{\"a}ge und -frachten im Elbegebiet sowie die Wirksamkeit von Maßnahmen zur Reduktion der N{\"a}hrstoffeintr{\"a}ge?, (iii) Ist unter der Nutzung (selbst einer sehr geringen Anzahl) verf{\"u}gbarer tagesaktueller Witterungsdaten in einem stark heterogenen Einzugsgebiet eine valide Ansprache der aktuellen {\"o}kohydrologischen Situation des Elbeeinzugsgebiets m{\"o}glich? Die aktuellen Szenarien best{\"a}tigen die Richtung, jedoch nicht das Ausmaß der Klimafolgen: Die R{\"u}ckg{\"a}nge des mittleren j{\"a}hrlichen Gesamtabflusses und der monatlichen Abfl{\"u}sse an den Pegeln bis Mitte des Jahrhunderts betragen f{\"u}r das STARS-Szenario ca. 30 \%. Die R{\"u}ckg{\"a}nge bei den auf dem ISI-MIP-Szenario basierenden Modellstudien liegen hingegen nur bei ca. 10 \%. Hauptursachen f{\"u}r diese Divergenz sind die Unterschiede in den Niederschlagsprojektionen sowie die Unterschiede in der jahreszeitlichen Verteilung der Erw{\"a}rmung. Im STARS-Szenario gehen methodisch bedingt die Niederschl{\"a}ge zur{\"u}ck und der Winter erw{\"a}rmt sich st{\"a}rker als der Sommer. In dem ISI-MIP-Szenario bleiben die Niederschl{\"a}ge nahezu stabil und die Erw{\"a}rmung im Sommer und Winter unterscheidet sich nur geringf{\"u}gig. Generell nehmen die N{\"a}hrstoffeintr{\"a}ge und -frachten mit den Abfl{\"u}ssen in beiden Szenarien unterproportional ab, wobei die Frachten jeweils st{\"a}rker als die Eintr{\"a}ge zur{\"u}ckgehen. Die konkreten Effekte der Abfluss{\"a}nderungen sind gering und liegen im einstelligen Prozentbereich. Gleiches gilt f{\"u}r die Unterschiede zwischen den Szenarien. Der Effekt von zwei ausgew{\"a}hlten Maßnahmen zur Reduktion der N{\"a}hrstoffeintr{\"a}ge und -frachten unterscheidet sich bei verschiedenen Abflussverh{\"a}ltnissen, repr{\"a}sentiert durch unterschiedliche Klimaszenarien in unterschiedlich feuchter Auspr{\"a}gung, ebenfalls nur geringf{\"u}gig. Die Beantwortung der ersten beiden Forschungsfragen zeigt, dass die Aktualisierung von Klimaszenarien in einem ansonsten "eingefrorenen" Verbund von {\"o}kohydrologischen Daten und Modellen eine wichtige Pr{\"u}foption f{\"u}r die Plausibilisierung von Klimafolgenanalysen darstellt. Sie bildet die methodische Grundlage f{\"u}r die Schlussfolgerung, dass bei der Wassermenge eine Neubewertung der Klimafolgen notwendig ist, w{\"a}hrend dies bei den N{\"a}hrstoffeintr{\"a}gen und -frachten nicht der Fall ist. Die zur Beantwortung der dritten Forschungsfrage mit SWIM-live durchgef{\"u}hrten Validierungsstudien ergeben Diskrepanzen am Lysimeterstandort und bei den Abfl{\"u}ssen aus den Teilgebieten Saale und Spree. Sie lassen sich zum Teil mit der notwendigen Interpolationsweite der Witterungsdaten und dem Einfluss von Wasserbewirtschaftungsmaßnahmen erkl{\"a}ren. Insgesamt zeigen die Validierungsergebnisse, dass schon die Pilotversion von SWIM-live f{\"u}r eine {\"o}kohydrologische Ansprache des Gebietswasserhaushaltes im Elbeeinzugsgebiet genutzt werden kann. SWIM-live erm{\"o}glicht eine unmittelbare Betrachtung und Beurteilung simulierter Daten. Dadurch werden Unsicherheiten bei der Modellierung direkt offengelegt und k{\"o}nnen infolge dessen reduziert werden. Zum einen f{\"u}hrte die Verdichtung der meteorologischen Eingangsdaten durch die Verwendung von nun ca. 700 anstatt 19 Klima- bzw. Niederschlagstationen zu einer Verbesserung der Ergebnisse. Zum anderen wurde SWIM-live beispielhaft f{\"u}r einen Zyklus aus punktueller Modellverbesserung und fl{\"a}chiger {\"U}berpr{\"u}fung der Simulationsergebnisse genutzt. Die einzelnen Teilarbeiten tragen jeweils zur Dynamisierung von Klimafolgenanalysen im Elbegebiet bei. Der Anlass hierf{\"u}r war durch die fehlerhaften methodischen Grundlagen von STARS gegeben. Die Sinnf{\"a}lligkeit der Dynamisierung ist jedoch nicht an diesen konkreten Anlass gebunden, sondern beruht auf der grundlegenden Einsicht, dass Ad-hoc-Szenarienanalysen immer auch pragmatische Vereinfachungen zugrunde liegen, die fortlaufend {\"u}berpr{\"u}ft werden m{\"u}ssen.}, language = {de} } @phdthesis{Olonscheck2016, author = {Olonscheck, Mady}, title = {Climate change impacts on electricity and residential energy demand}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98378}, school = {Universit{\"a}t Potsdam}, pages = {XXIV, 127}, year = {2016}, abstract = {The energy sector is both affected by climate change and a key sector for climate protection measures. Energy security is the backbone of our modern society and guarantees the functioning of most critical infrastructure. Thus, decision makers and energy suppliers of different countries should be familiar with the factors that increase or decrease the susceptibility of their electricity sector to climate change. Susceptibility means socioeconomic and structural characteristics of the electricity sector that affect the demand for and supply of electricity under climate change. Moreover, the relevant stakeholders are supposed to know whether the given national energy and climate targets are feasible and what needs to be done in order to meet these targets. In this regard, a focus should be on the residential building sector as it is one of the largest energy consumers and therefore emitters of anthropogenic CO 2 worldwide. This dissertation addresses the first aspect, namely the susceptibility of the electricity sector, by developing a ranked index which allows for quantitative comparison of the electricity sector susceptibility of 21 European countries based on 14 influencing factors. Such a ranking has not been completed to date. We applied a sensitivity analysis to test the relative effect of each influencing factor on the susceptibility index ranking. We also discuss reasons for the ranking position and thus the susceptibility of selected countries. The second objective, namely the impact of climate change on the energy demand of buildings, is tackled by means of a new model with which the heating and cooling energy demand of residential buildings can be estimated. We exemplarily applied the model to Germany and the Netherlands. It considers projections of future changes in population, climate and the insulation standards of buildings, whereas most of the existing studies only take into account fewer than three different factors that influence the future energy demand of buildings. Furthermore, we developed a comprehensive retrofitting algorithm with which the total residential building stock can be modeled for the first time for each year in the past and future. The study confirms that there is no correlation between the geographical location of a country and its position in the electricity sector susceptibility ranking. Moreover, we found no pronounced pattern of susceptibility influencing factors between countries that ranked higher or lower in the index. We illustrate that Luxembourg, Greece, Slovakia and Italy are the countries with the highest electricity sector susceptibility. The electricity sectors of Norway, the Czech Republic, Portugal and Denmark were found to be least susceptible to climate change. Knowledge about the most important factors for the poor and good ranking positions of these countries is crucial for finding adequate adaptation measures to reduce the susceptibility of the electricity sector. Therefore, these factors are described within this study. We show that the heating energy demand of residential buildings will strongly decrease in both Germany and the Netherlands in the future. The analysis for the Netherlands focused on the regional level and a finer temporal resolution which revealed strong variations in the future heating energy demand changes by province and by month. In the German study, we additionally investigated the future cooling energy demand and could demonstrate that it will only slightly increase up to the middle of this century. Thus, increases in the cooling energy demand are not expected to offset reductions in heating energy demand. The main factor for substantial heating energy demand reductions is the retrofitting of buildings. We are the first to show that the given German and Dutch energy and climate targets in the building sector can only be met if the annual retrofitting rates are substantially increased. The current rate of only about 1 \% of the total building stock per year is insufficient for reaching a nearly zero-energy demand of all residential buildings by the middle of this century. To reach this target, it would need to be at least tripled. To sum up, this thesis emphasizes that country-specific characteristics are decisive for the electricity sector susceptibility of European countries. It also shows for different scenarios how much energy is needed in the future to heat and cool residential buildings. With this information, existing climate mitigation and adaptation measures can be justified or new actions encouraged.}, language = {en} }