@misc{ParaskevopoulouDennisWeithoffetal.2019, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Hartmann, Stefanie and Tiedemann, Ralph}, title = {Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {796}, issn = {1866-8372}, doi = {10.25932/publishup-44105}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441050}, pages = {23}, year = {2019}, abstract = {Genetic divergence is impacted by many factors, including phylogenetic history, gene flow, genetic drift, and divergent selection. Rotifers are an important component of aquatic ecosystems, and genetic variation is essential to their ongoing adaptive diversification and local adaptation. In addition to coding sequence divergence, variation in gene expression may relate to variable heat tolerance, and can impose ecological barriers within species. Temperature plays a significant role in aquatic ecosystems by affecting species abundance, spatio-temporal distribution, and habitat colonization. Recently described (formerly cryptic) species of the Brachionus calyciflorus complex exhibit different temperature tolerance both in natural and in laboratory studies, and show that B. calyciflorus sensu stricto (s.s.) is a thermotolerant species. Even within B. calyciflorus s.s., there is a tendency for further temperature specializations. Comparison of expressed genes allows us to assess the impact of stressors on both expression and sequence divergence among disparate populations within a single species. Here, we have used RNA-seq to explore expressed genetic diversity in B. calyciflorus s.s. in two mitochondrial DNA lineages with different phylogenetic histories and differences in thermotolerance. We identify a suite of candidate genes that may underlie local adaptation, with a particular focus on the response to sustained high or low temperatures. We do not find adaptive divergence in established candidate genes for thermal adaptation. Rather, we detect divergent selection among our two lineages in genes related to metabolism (lipid metabolism, metabolism of xenobiotics).}, language = {en} } @article{ParaskevopoulouDennisWeithoffetal.2019, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Hartmann, Stefanie and Tiedemann, Ralph}, title = {Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {14}, publisher = {PLoS ONE}, address = {San Francisco, California}, issn = {1932-6203}, doi = {10.1371/journal.pone.0223134}, pages = {21}, year = {2019}, abstract = {Genetic divergence is impacted by many factors, including phylogenetic history, gene flow, genetic drift, and divergent selection. Rotifers are an important component of aquatic ecosystems, and genetic variation is essential to their ongoing adaptive diversification and local adaptation. In addition to coding sequence divergence, variation in gene expression may relate to variable heat tolerance, and can impose ecological barriers within species. Temperature plays a significant role in aquatic ecosystems by affecting species abundance, spatio-temporal distribution, and habitat colonization. Recently described (formerly cryptic) species of the Brachionus calyciflorus complex exhibit different temperature tolerance both in natural and in laboratory studies, and show that B. calyciflorus sensu stricto (s.s.) is a thermotolerant species. Even within B. calyciflorus s.s., there is a tendency for further temperature specializations. Comparison of expressed genes allows us to assess the impact of stressors on both expression and sequence divergence among disparate populations within a single species. Here, we have used RNA-seq to explore expressed genetic diversity in B. calyciflorus s.s. in two mitochondrial DNA lineages with different phylogenetic histories and differences in thermotolerance. We identify a suite of candidate genes that may underlie local adaptation, with a particular focus on the response to sustained high or low temperatures. We do not find adaptive divergence in established candidate genes for thermal adaptation. Rather, we detect divergent selection among our two lineages in genes related to metabolism (lipid metabolism, metabolism of xenobiotics).}, language = {en} } @article{Raatz2019, author = {Raatz, Larissa}, title = {Wirtschaften in einer reich strukturierten Landschaft - geht das ?}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {32 -- 33}, year = {2019}, language = {de} } @article{BuschKlausSchaeferetal.2019, author = {Busch, Verena and Klaus, Valentin Helmut and Schaefer, Deborah and Prati, Daniel and Boch, Steffen and M{\"u}ller, J{\"o}rg and Chiste, Melanie and Mody, Karsten and Bl{\"u}thgen, Nico and Fischer, Markus and H{\"o}lzel, Norbert and Kleinebecker, Till}, title = {Will I stay or will I go? Plant species-specific response and tolerance to high land-use intensity in temperate grassland ecosystems}, series = {Journal of vegetation science}, volume = {30}, journal = {Journal of vegetation science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12749}, pages = {674 -- 686}, year = {2019}, language = {en} } @article{LitwinColangeli2019, author = {Litwin, Magdalena and Colangeli, Pierluigi}, title = {Wie und wohin reisen Wasserfl{\"o}he?}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {28 -- 29}, year = {2019}, language = {de} } @article{Wiebke2019, author = {Wiebke, Ullmann}, title = {Warum hat Bayern mehr Feldhasen als Brandenburg?}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {46 -- 47}, year = {2019}, language = {de} } @misc{DierschkeHeinken2019, author = {Dierschke, Hartmut and Heinken, Thilo}, title = {Vorwort}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {39}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, pages = {7 -- 7}, year = {2019}, language = {de} } @book{OPUS4-62367, title = {Vielfalt in der Uckermark}, editor = {Berlin-Brandenburgisches Institut f{\"u}r Biodiverst{\"a}tsforschung,}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {62}, year = {2019}, language = {de} } @article{WeissWulff2019, author = {Weiß, Lina and Wulff, Monika}, title = {Ver{\"a}nderung der Landnutzung in der nord-westlichen Uckermark von 1780 bis heute}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {20 -- 21}, year = {2019}, language = {de} } @article{TabaresJimenezZimmermannDietzeetal.2019, author = {Tabares Jimenez, Ximena del Carmen and Zimmermann, Heike Hildegard and Dietze, Elisabeth and Ratzmann, Gregor and Belz, Lukas and Vieth-Hillebrand, Andrea and Dupont, Lydie and Wilkes, Heinz and Mapani, Benjamin and Herzschuh, Ulrike}, title = {Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers}, series = {Ecology and evolution}, volume = {10}, journal = {Ecology and evolution}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5955}, pages = {962 -- 979}, year = {2019}, abstract = {Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state.}, language = {en} }