@misc{BiskabornLanckmanLantuitetal.2015, author = {Biskaborn, Boris K. and Lanckman, J.-P. and Lantuit, Hugues and Elger, K. and Streletskiy, Dmitry and Cable, W. L. and Romanovsky, Vladimir E.}, title = {The new database of the Global Terrestrial Network for Permafrost (GTN-P)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {523}, issn = {1866-8372}, doi = {10.25932/publishup-40961}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409612}, pages = {15}, year = {2015}, abstract = {The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness (ALT) data from Arctic, Antarctic and mountain permafrost regions. The purpose of GTN-P is to establish an early warning system for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we introduce the GTN-P database and perform statistical analysis of the GTN-P metadata to identify and quantify the spatial gaps in the site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the data management system in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies based on national correspondents. Assessment of the metadata and data quality reveals 63\% metadata completeness at active layer sites and 50\% metadata completeness for boreholes. Voronoi tessellation analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides a potential method to locate additional permafrost research sites by improving the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73\% are shallower than 25m and 27\% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations, which are illustrated with maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high representation of areas with smaller expected temperature rise but a lower number of sites within Arctic areas where climate models project extreme temperature increase.}, language = {en} } @misc{FrielerLevermannElliottetal.2015, author = {Frieler, Katja and Levermann, Anders and Elliott, J. and Heinke, J. and Arneth, A. and Bierkens, M. F. P. and Ciais, Philippe and Clark, D. B. and Deryng, D. and Doell, P. and Falloon, P. and Fekete, B. and Folberth, Christian and Friend, A. D. and Gellhorn, C. and Gosling, S. N. and Haddeland, I. and Khabarov, N. and Lomas, M. and Masaki, Y. and Nishina, K. and Neumann, K. and Oki, T. and Pavlick, R. and Ruane, A. C. and Schmid, E. and Schmitz, C. and Stacke, T. and Stehfest, E. and Tang, Q. and Wisser, D. and Huber, V. and Piontek, Franziska and Warszawski, L. and Schewe, Jacob and Lotze-Campen, Hermann and Schellnhuber, Hans Joachim}, title = {A framework for the cross-sectoral integration of multi-model impact projections}, series = {Earth system dynamics}, journal = {Earth system dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407968}, pages = {14}, year = {2015}, abstract = {Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop-and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.}, language = {en} } @misc{FrindteAllgaierGrossartetal.2015, author = {Frindte, Katharina and Allgaier, Martin and Grossart, Hans-Peter and Eckert, Werner}, title = {Microbial response to experimentally controlled redox transitions at the sediment water interface}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {509}, issn = {1866-8372}, doi = {10.25932/publishup-40846}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408464}, pages = {17}, year = {2015}, abstract = {The sediment-water interface of freshwater lakes is characterized by sharp chemical gradients, shaped by the interplay between physical, chemical and microbial processes. As dissolved oxygen is depleted in the uppermost sediment, the availability of alternative electron acceptors, e.g. nitrate and sulfate, becomes the limiting factor. We performed a time series experiment in a mesocosm to simulate the transition from aerobic to anaerobic conditions at the sediment-water interface. Our goal was to identify changes in the microbial activity due to redox transitions induced by successive depletion of available electron acceptors. Monitoring critical hydrochemical parameters in the overlying water in conjunction with a new sampling strategy for sediment bacteria enabled us to correlate redox changes in the water to shifts in the active microbial community and the expression of functional genes representing specific redox-dependent microbial processes. Our results show that during several transitions from oxic-heterotrophic condition to sulfate-reducing condition, nitrate-availability and the on-set of sulfate reduction strongly affected the corresponding functional gene expression. There was evidence of anaerobic methane oxidation with NOx. DGGE analysis revealed redox-related changes in microbial activity and expression of functional genes involved in sulfate and nitrite reduction, whereas methanogenesis and methanotrophy showed only minor changes during redox transitions. The combination of high-frequency chemical measurements and molecular methods provide new insights into the temporal dynamics of the interplay between microbial activity and specific redox transitions at the sediment-water interface.}, language = {en} }