@article{EckertNorellMiedemaetal.2017, author = {Eckert, Sebastian Oliver and Norell, Jesper and Miedema, Piter S. and Beye, Martin and Fondell, Mattis and Quevedo, Wilson and Kennedy, Brian and Hantschmann, Markus and Pietzsch, Annette and van Kuiken, Benjamin and Ross, Matthew and Minitti, Michael P. and Moeller, Stefan P. and Schlotter, William F. and Khalil, Munira and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Untersuchung unabh{\"a}ngiger N-H- und N-C-Bindungsverformungen auf ultrakurzen Zeitskalen mit resonanter inelastischer R{\"o}ntgenstreuung}, series = {Angewandte Chemie}, volume = {129}, journal = {Angewandte Chemie}, number = {22}, issn = {1521-3757}, doi = {10.1002/ange.201700239}, pages = {6184 -- 6188}, year = {2017}, abstract = {Die Femtosekundendynamik nach resonanten Photoanregungen mit optischen und R{\"o}ntgenpulsen erm{\"o}glicht eine selektive Verformung von chemischen N-H- und N-C-Bindungen in 2-Thiopyridon in w{\"a}ssriger L{\"o}sung. Die Untersuchung der orbitalspezifischen elektronischen Struktur und ihrer Dynamik auf ultrakurzen Zeitskalen mit resonanter inelastischer R{\"o}ntgenstreuung an der N1s-Resonanz am Synchrotron und dem Freie-Elektronen-Laser LCLS in Kombination mit quantenchemischen Multikonfigurationsberechnungen erbringen den direkten Nachweis dieser kontrollierten photoinduzierten Molek{\"u}lverformungen und ihrer ultrakurzen Zeitskala.}, language = {de} } @article{vonReppertMatternPudelletal.2020, author = {von Reppert, Alexander and Mattern, Maximilian and Pudell, Jan-Etienne and Zeuschner, Steffen Peer and Dumesnil, Karine and Bargheer, Matias}, title = {Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer}, series = {Structural Dynamics}, volume = {7}, journal = {Structural Dynamics}, number = {024303}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/1.5145315}, pages = {13}, year = {2020}, abstract = {Optical excitation of spin-ordered rare earth metals triggers a complex response of the crystal lattice since expansive stresses from electron and phonon excitations compete with a contractive stress induced by spin disorder. Using ultrafast x-ray diffraction experiments, we study the layer specific strain response of a dysprosium film within a metallic heterostructure upon femtosecond laser-excitation. The elastic and diffusive transport of energy to an adjacent, non-excited detection layer clearly separates the contributions of strain pulses and thermal excitations in the time domain. We find that energy transfer processes to magnetic excitations significantly modify the observed conventional bipolar strain wave into a unipolar pulse. By modeling the spin system as a saturable energy reservoir that generates substantial contractive stress on ultrafast timescales, we can reproduce the observed strain response and estimate the time- and space dependent magnetic stress. The saturation of the magnetic stress contribution yields a non-monotonous total stress within the nanolayer, which leads to unconventional picosecond strain pulses.}, language = {en} } @article{RajuLiebigKlemkeetal.2020, author = {Raju, Rajarshi Roy and Liebig, Ferenc and Klemke, Bastian and Koetz, Joachim}, title = {Ultralight magnetic aerogels from Janus emulsions}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, number = {13}, publisher = {RSC Publishing}, address = {London}, issn = {2046-2069}, doi = {10.1039/c9ra10247g}, pages = {7492 -- 7499}, year = {2020}, abstract = {Magnetite containing aerogels were synthesized by freeze-drying olive oil/silicone oil-based Janus emulsion gels containing gelatin and sodium carboxymethylcellulose (NaCMC). The magnetite nanoparticles dispersed in olive oil are processed into the gel and remain in the macroporous aerogel after removing the oil components. The coexistence of macropores from the Janus droplets and mesopores from freeze-drying of the hydrogels in combination with the magnetic properties offer a special hierarchical pore structure, which is of relevance for smart supercapacitors, biosensors, and spilled oil sorption and separation. The morphology of the final structure was investigated in dependence on initial compositions. More hydrophobic aerogels with magnetic responsiveness were synthesized by bisacrylamide-crosslinking of the hydrogel. The crosslinked aerogels can be successfully used in magnetically responsive clean up experiments of the cationic dye methylene blue.}, language = {en} } @article{ZeuschnerParpiievPezeriletal.2019, author = {Zeuschner, Steffen and Parpiiev, Tymur and Pezeril, Thomas and Hillion, Arnaud and Dumesnil, Karine and Anane, Abdelmadjid and Pudell, Jan-Etienne and Willig, Lisa and R{\"o}ssle, Matthias and Herzog, Marc and von Reppert, Alexander and Bargheer, Matias}, title = {Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction}, series = {Structural Dynamics}, volume = {6}, journal = {Structural Dynamics}, number = {2}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/1.5084140}, pages = {9}, year = {2019}, abstract = {We combine ultrafast X-ray diffraction (UXRD) and time-resolved Magneto-Optical Kerr Effect (MOKE) measurements to monitor the strain pulses in laser-excited TbFe2/Nb heterostructures. Spatial separation of the Nb detection layer from the laser excitation region allows for a background-free characterization of the laser-generated strain pulses. We clearly observe symmetric bipolar strain pulses if the excited TbFe2 surface terminates the sample and a decomposition of the strain wavepacket into an asymmetric bipolar and a unipolar pulse, if a SiO2 glass capping layer covers the excited TbFe2 layer. The inverse magnetostriction of the temporally separated unipolar strain pulses in this sample leads to a MOKE signal that linearly depends on the strain pulse amplitude measured through UXRD. Linear chain model simulations accurately predict the timing and shape of UXRD and MOKE signals that are caused by the strain reflections from multiple interfaces in the heterostructure.}, language = {en} } @article{MickelssonPaycha2010, author = {Mickelsson, Jouko and Paycha, Sylvie}, title = {The logarithmic residue density of a generalized Laplacian}, series = {Journal of the Australian Mathematical Society}, volume = {90}, journal = {Journal of the Australian Mathematical Society}, number = {1}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {0263-6115}, doi = {10.1017/S144678871100108X}, pages = {53 -- 80}, year = {2010}, abstract = {We show that the residue density of the logarithm of a generalized Laplacian on a closed manifold definesan invariant polynomial-valued differential form. We express it in terms of a finite sum of residues ofclassical pseudodifferential symbols. In the case of the square of a Dirac operator, these formulas providea pedestrian proof of the Atiyah-Singer formula for a pure Dirac operator in four dimensions and for atwisted Dirac operator on a flat space of any dimension. These correspond to special cases of a moregeneral formula by Scott and Zagier. In our approach, which is of perturbative nature, we use either aCampbell-Hausdorff formula derived by Okikiolu or a noncommutative Taylor-type formula.}, language = {en} } @article{WippertDriessleinBecketal.2020, author = {Wippert, Pia-Maria and Drießlein, David and Beck, Heidrun and Schneider, Christian and Puschmann, Anne-Katrin and Banzer, Winfried and Schiltenwolf, Marcus}, title = {The Feasibility and Effectiveness of a New Practical Multidisciplinary Treatment for Low-Back Pain}, series = {Journal of Clinical Medicine}, volume = {9}, journal = {Journal of Clinical Medicine}, number = {115}, publisher = {MDPI}, address = {Basel}, issn = {2077-0383}, doi = {10.3390/jcm9010115}, pages = {15}, year = {2020}, abstract = {Low-back pain is a major health problem exacerbated by the fact that most treatments are not suitable for self-management in everyday life. Particularly, interdisciplinary programs consist of intensive therapy lasting several weeks. Additionally, therapy components are rarely coordinated regarding reinforcing effects, which would improve complaints in persons with higher pain. This study assesses the effectiveness of a self-management program, firstly for persons suffering from higher pain and secondly compared to regular routines. Study objectives were treated in a single-blind multicenter controlled trial. A total of n = 439 volunteers (age 18-65 years) were randomly assigned to a twelve-week multidisciplinary sensorimotor training (3-weeks-center- and 9-weeks-homebased) or control group. The primary outcome pain (Chronic-Pain-Grade) as well as mental health were assessed by questionnaires at baseline and follow-up (3/6/12/24 weeks, M2-M5). For statistical analysis, multiple linear regression models were used. N = 291 (age 39.7 ± 12.7 years, female = 61.1\%, 77\% CPG = 1) completed training (M1/M4/M5), showing a significantly stronger reduction of mental health complaints (anxiety, vital exhaustion) in people with higher than those with lower pain in multidisciplinary treatment. Compared to regular routines, the self-management-multidisciplinary treatment led to a clinically relevant reduction of pain-disability and significant mental health improvements. Low-cost exercise programs may provide enormous relief for therapeutic processes, rehabilitation aftercare, and thus, cost savings for the health system}, language = {en} } @article{AbouserieSchildeTaubert2018, author = {Abouserie, Ahed and Schilde, Uwe and Taubert, Andreas}, title = {The crystal structure of N-butylpyridinium bis(μ2-dichlorido)-tetrachloridodicopper(II), C₁₈H₂₈N₂Cu₂Cl₆}, series = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, volume = {233}, journal = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, number = {4}, publisher = {de Gruyter}, address = {Berlin und M{\"u}nchen}, issn = {2194-4946}, doi = {10.1515/NCRS-2018-0099}, pages = {743 -- 746}, year = {2018}, abstract = {C₉H₁₄Cl₃CuN, monoclinic, P2₁/n (no. 14), a = 9.6625(6) {\AA}, b = 9.3486(3) {\AA}, c = 14.1168(8) {\AA}, β = 102.288(5)°, V = 1245.97(11) {\AA}³, Z = 4, Rgₜ(F) = 0.0182, wRᵣₑf(F²) = 0.0499, T = 210(2) K.}, language = {en} } @article{FolkertsmaWestburyEccardetal.2018, author = {Folkertsma, Remco and Westbury, Michael V. and Eccard, Jana and Hofreiter, Michael}, title = {The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae)}, series = {Mitochondrial DNA Part B}, volume = {3}, journal = {Mitochondrial DNA Part B}, number = {1}, issn = {2380-2359}, doi = {10.1080/23802359.2018.1457994}, pages = {446 -- 447}, year = {2018}, abstract = {The common vole, Microtus arvalis belongs to the genus Microtus in the subfamily Arvicolinae. In this study, the complete mitochondrial genome of M. arvalis was recovered using shotgun sequencing and an iterative mapping approach using three related species. Phylogenetic analyses using the sequence of 21 arvicoline species place the common vole as a sister species to the East European vole (Microtus levis), but as opposed to previous results we find no support for the recognition of the genus Neodon within the subfamily Arvicolinae, as this is, as well as the genus Lasiopodomys, found within the Microtus genus.}, language = {en} } @article{StettnerLantuitHeimetal.2018, author = {Stettner, Samuel and Lantuit, Hugues and Heim, Birgit and Eppler, Jayson and Roth, Achim and Bartsch, Annett and Rabus, Bernhard}, title = {TerraSAR-X time series fill a gap in spaceborne snowmelt monitoring of small arctic catchments}, series = {Remote sensing}, volume = {10}, journal = {Remote sensing}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10071155}, pages = {26}, year = {2018}, abstract = {The timing of snowmelt is an important turning point in the seasonal cycle of small Arctic catchments. The TerraSAR-X (TSX) satellite mission is a synthetic aperture radar system (SAR) with high potential to measure the high spatiotemporal variability of snow cover extent (SCE) and fractional snow cover (FSC) on the small catchment scale. We investigate the performance of multi-polarized and multi-pass TSX X-Band SAR data in monitoring SCE and FSC in small Arctic tundra catchments of Qikiqtaruk (Herschel Island) off the Yukon Coast in the Western Canadian Arctic. We applied a threshold based segmentation on ratio images between TSX images with wet snow and a dry snow reference, and tested the performance of two different thresholds. We quantitatively compared TSX- and Landsat 8-derived SCE maps using confusion matrices and analyzed the spatiotemporal dynamics of snowmelt from 2015 to 2017 using TSX, Landsat 8 and in situ time lapse data. Our data showed that the quality of SCE maps from TSX X-Band data is strongly influenced by polarization and to a lesser degree by incidence angle. VH polarized TSX data performed best in deriving SCE when compared to Landsat 8. TSX derived SCE maps from VH polarization detected late lying snow patches that were not detected by Landsat 8. Results of a local assessment of TSX FSC against the in situ data showed that TSX FSC accurately captured the temporal dynamics of different snow melt regimes that were related to topographic characteristics of the studied catchments. Both in situ and TSX FSC showed a longer snowmelt period in a catchment with higher contributions of steep valleys and a shorter snowmelt period in a catchment with higher contributions of upland terrain. Landsat 8 had fundamental data gaps during the snowmelt period in all 3 years due to cloud cover. The results also revealed that by choosing a positive threshold of 1 dB, detection of ice layers due to diurnal temperature variations resulted in a more accurate estimation of snow cover than a negative threshold that detects wet snow alone. We find that TSX X-Band data in VH polarization performs at a comparable quality to Landsat 8 in deriving SCE maps when a positive threshold is used. We conclude that TSX data polarization can be used to accurately monitor snowmelt events at high temporal and spatial resolution, overcoming limitations of Landsat 8, which due to cloud related data gaps generally only indicated the onset and end of snowmelt.}, language = {en} } @article{GrafeBatsiosMeyeretal.2019, author = {Grafe, Marianne and Batsios, Petros and Meyer, Irene and Lisin, Daria and Baumann, Otto and Goldberg, Martin W. and Gr{\"a}f, Ralph}, title = {Supramolecular Structures of the Dictyostelium Lamin NE81}, series = {Cells}, volume = {8}, journal = {Cells}, number = {2}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells8020162}, pages = {17}, year = {2019}, abstract = {Nuclear lamins are nucleus-specific intermediate filaments (IF) found at the inner nuclear membrane (INM) of the nuclear envelope (NE). Together with nuclear envelope transmembrane proteins, they form the nuclear lamina and are crucial for gene regulation and mechanical robustness of the nucleus and the whole cell. Recently, we characterized Dictyostelium NE81 as an evolutionarily conserved lamin-like protein, both on the sequence and functional level. Here, we show on the structural level that the Dictyostelium NE81 is also capable of assembling into filaments, just as metazoan lamin filament assemblies. Using field-emission scanning electron microscopy, we show that NE81 expressed in Xenopous oocytes forms filamentous structures with an overall appearance highly reminiscent of Xenopus lamin B2. The in vitro assembly properties of recombinant His-tagged NE81 purified from Dictyostelium extracts are very similar to those of metazoan lamins. Super-resolution stimulated emission depletion (STED) and expansion microscopy (ExM), as well as transmission electron microscopy of negatively stained purified NE81, demonstrated its capability of forming filamentous structures under low-ionic-strength conditions. These results recommend Dictyostelium as a non-mammalian model organism with a well-characterized nuclear envelope involving all relevant protein components known in animal cells.}, language = {en} }