@phdthesis{Toele2016, author = {T{\"o}le, Nadine}, title = {Molekulare und histologische Untersuchungen zur gustatorischen Fettwahrnehmung des Menschen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93180}, school = {Universit{\"a}t Potsdam}, pages = {XII, 107, LVII}, year = {2016}, abstract = {Die hohe Energieaufnahme durch Fette ist ein Hauptfaktor f{\"u}r die Entstehung von Adipositas, was zu weltweiten Bestrebungen f{\"u}hrte, die Fettaufnahme zu verringern. Fettreduzierte Lebensmittel erreichen jedoch, trotz ihrer Weiterentwicklung, nicht die Schmackhaftigkeit ihrer Originale. Die traditionelle Sichtweise, dass die Attraktivit{\"a}t von Fetten allein durch Textur, Geruch, Aussehen und postingestive Effekte bestimmt wird, wird nun durch das Konzept einer gustatorischen Wahrnehmung erg{\"a}nzt. Bei Nagetieren zeigte sich, dass Lipide unabh{\"a}ngig von den vorgenannten Eigenschaften erkannt werden, sowie, dass Fetts{\"a}uren, freigesetzt durch linguale Lipasen, als gustatorische Stimuli fungieren und Fetts{\"a}uresensoren in Geschmackszellen exprimiert sind. Die Datenlage f{\"u}r den Menschen erwies sich jedoch als sehr begrenzt, daher war es Ziel der vorliegenden Arbeit molekulare und histologische Voraussetzungen f{\"u}r eine gustatorische Fettwahrnehmung beim Menschen zu untersuchen. Zun{\"a}chst wurde humanes Geschmacksgewebe mittels RT-PCR und immunhistochemischen Methoden auf die Expression von Fetts{\"a}uresensoren untersucht, sowie exprimierende Zellen in Kof{\"a}rbeexperimenten charakterisiert und quantifiziert. Es wurde die Expression fetts{\"a}uresensitiver Rezeptoren nachgewiesen, deren Agonisten das gesamte Spektrum an kurz- bis langkettigen Fetts{\"a}uren abdecken (GPR43, GPR84, GPR120, CD36, KCNA5). Ein zweifelsfreier Nachweis des Proteins konnte f{\"u}r den auf langkettige Fetts{\"a}uren spezialisierten Rezeptor GPR120 in Typ-I- und Typ-III-Geschmackszellen der Wallpapillen erbracht werden. Etwa 85 \% dieser GPR120-exprimierenden Zellen enthielten keine der ausgew{\"a}hlten Rezeptoren der Geschmacksqualit{\"a}ten s{\"u}ß (TAS1R2/3), umami (TAS1R1/3) oder bitter (TAS2R38). Somit findet sich in humanen Geschmackspapillen nicht nur mindestens ein Sensor, sondern m{\"o}glicherweise auch eine spezifische, fetts{\"a}uresensitive Zellpopulation. Weitere RT-PCR-Experimente und Untersuchungen mittels In-situ-Hybridisierung wurden zur Kl{\"a}rung der Frage durchgef{\"u}hrt, ob Lipasen in den Von-Ebner-Speicheldr{\"u}sen (VED) existieren, die freie Fetts{\"a}uren aus Triglyceriden als gustatorischen Stimulus freisetzen k{\"o}nnen. Es zeigte sich zwar keine Expression der bei Nagetieren gefundenen Lipase F (LIPF), jedoch der eng verwandten Lipasen K, M und N in den ser{\"o}sen Zellen der VED. In-silico-Untersuchungen der Sekund{\"a}r- und Terti{\"a}rstrukturen zeigten die hohe {\"A}hnlichkeit zu LIPF, erwiesen aber auch Unterschiede in den Bindungstaschen der Enzyme, welche auf ein differenziertes Substratspektrum hinweisen. Die Anwesenheit eines spezifischen Signalpeptids macht eine Sekretion der Lipasen in den die Geschmacksporen umsp{\"u}lenden Speichel wahrscheinlich und damit auch eine Bereitstellung von Fetts{\"a}uren als Stimuli f{\"u}r Fetts{\"a}uresensoren. Die {\"U}bertragung des durch diese Stimuli hervorgerufenen Signals von Geschmackszellen auf gustatorische Nervenfasern {\"u}ber P2X-Rezeptormultimere wurde mit Hilfe einer vorherigen Intervention mit einem P2X3 /P2X2/3-spezifischen Antagonisten an der Maus als Modellorganismus im Kurzzeit-Pr{\"a}ferenztest untersucht. Es zeigte sich weder eine Beeintr{\"a}chtigung der Wahrnehmung einer Fetts{\"a}urel{\"o}sung, noch einer zuckerhaltigen Kontrolll{\"o}sung, wohingegen die Wahrnehmung einer Bitterstoffl{\"o}sung reduziert wurde. Somit ist anhand der Ergebnisse dieser Arbeit eine Beteiligung des P2X3-Homomers bzw. des P2X2/3-Heteromers unwahrscheinlich, jedoch die des P2X2-Homomers und damit der gustatorischen Nervenfasern nicht ausgeschlossen. Die Ergebnisse dieser Arbeit weisen auf die Erf{\"u}llung grundlegender Voraussetzungen f{\"u}r die gustatorische Fett(s{\"a}ure)wahrnehmung hin und tragen zum Verst{\"a}ndnis der sensorischen Fettwahrnehmung und der Regulation der Fettaufnahme bei. Das Wissen um die Regulation dieser Mechanismen stellt eine Grundlage zur Aufkl{\"a}rung der Ursachen und damit der Bek{\"a}mpfung von Adipositas und assoziierten Krankheiten dar.}, language = {de} } @phdthesis{Stolzenburg2016, author = {Stolzenburg, Antje}, title = {Bittergeschmacksrezeptoren des peripheren und zentralen Nervensystems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-92397}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 155}, year = {2016}, abstract = {Der Bittergeschmack warnt den Organismus vor potentiell verdorbener oder giftiger Nahrung und ist somit ein wichtiger Kontrollmechanismus. Die initiale Detektion der zahlreich vorkommenden Bitterstoffe erfolgt bei der Maus durch 35 Bitterrezeptoren (Tas2rs), die sich im Zungengewebe befinden. Die Geschmacksinformation wird anschließend von der Zunge {\"u}ber das periphere (PNS) ins zentrale Nervensystem (ZNS) geleitet, wo deren Verarbeitung stattfindet. Die Verarbeitung der Geschmacksinformation konnte bislang nicht g{\"a}nzlich aufgekl{\"a}rt werden. Neue Studien deuten auf eine Expression von Tas2rs auch im PNS und ZNS entlang der Geschmacksbahn hin. {\"U}ber Vorkommen und Aufgaben dieser Rezeptoren bzw. Rezeptorzellen im Nervensystem ist bislang wenig bekannt. Im Rahmen dieser Arbeit wurde die Tas2r-Expression in verschiedenen Mausmodellen untersucht, Tas2r-exprimierende Zellen identifiziert und deren Funktionen bei der {\"U}bertragung der Geschmacksinformationen analysiert. Im Zuge der Expressionsanalysen mittels qRT-PCR konnte die Expression von 25 der 35 bekannten Bittergeschmacksrezeptoren im zentralen Nervensystem der Maus nachgewiesen werden. Die Expressionsmuster im PNS sowie im ZNS lassen dar{\"u}ber hinaus Vermutungen zu Funktionen in verschiedenen Bereichen des Nervensystems zu. Basierend auf den Ergebnissen der Expressionsanalysen war es m{\"o}glich, stark exprimierte Tas2rs mittels In-situ-Hybridisierung in verschiedenen Zelltypen zu visualisieren. Des Weiteren konnten immunhistochemische F{\"a}rbungen unter Verwendung eines genetisch modifizierten Mausmodells die Ergebnisse der Expressionsanalysen best{\"a}tigen. Sie zeigten eine Expression von Tas2rs, am Beispiel des Tas2r131-Rezeptors, in cholinergen, dopaminergen, GABAergen, noradrenergen und glycinerg-angesteuerten Projektionsneuronen sowie in Interneuronen. Die Ergebnisse der vorliegenden Arbeit zeigen daher erstmals das Vorkommen von Tas2rs in verschiedenen neuronalen Zelltypen in weiten Teilen des ZNS. Dies l{\"a}sst den Schluss zu, dass Tas2r-exprimierende Zellen potentiell multiple Funktionen innehaben. Anhand von Verhaltensexperimenten in genetisch modifizierten M{\"a}usen wurde die m{\"o}gliche Funktion von Tas2r131-exprimierenden Neuronen (Tas2r131-Neurone) bei der Geschmackswahrnehmung untersucht. Die Ergebnisse weisen auf eine Beteiligung von Tas2r131-Neuronen an der Signalweiterleitung bzw. -verarbeitung der Geschmacksinformation f{\"u}r eine Auswahl von Bittersubstanzen hin. Die Analysen zeigen dar{\"u}ber hinaus, dass Tas2r131-Neuronen nicht an der Geschmackswahrnehmung anderer Bitterstoffe sowie Geschmacksstimuli anderer Qualit{\"a}ten (s{\"u}ß, umami, sauer, salzig), beteiligt sind. Eine spezifische „Tas2r131-Bittergeschmacksbahn", die mit anderen potentiellen „Bitterbahnen" teils unabh{\"a}ngige, teils {\"u}berlappende Signalwege bzw. Verarbeitungsbereiche besitzt, bildet eine m{\"o}gliche zellul{\"a}re Grundlage zur Unterscheidung von Bitterstoffen. Die im Rahmen dieser Arbeit entstandene Hypothese einer potentiellen Diskriminierung von Bitterstoffen soll daher in weiterf{\"u}hrenden Studien durch die Etablierung eines Verhaltenstest mit M{\"a}usen gepr{\"u}ft werden.}, language = {de} } @phdthesis{Toele2013, author = {T{\"o}le, Jonas Claudius}, title = {{\"U}ber die Arc-catFISH-Methode als neues Werkzeug zur Charakterisierung der Geschmacksverarbeitung im Hirnstamm der Maus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70491}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Intensive Forschung hat in den vergangenen Jahrzehnten zu einer sehr detaillierten Charakterisierung des Geschmackssystems der S{\"a}ugetiere gef{\"u}hrt. Dennoch sind mit den bislang eingesetzten Methoden wichtige Fragestellungen unbeantwortet geblieben. Eine dieser Fragen gilt der Unterscheidung von Bitterstoffen. Die Zahl der Substanzen, die f{\"u}r den Menschen bitter schmecken und in Tieren angeborenes Aversionsverhalten ausl{\"o}sen, geht in die Tausende. Diese Substanzen sind sowohl von der chemischen Struktur als auch von ihrer Wirkung auf den Organismus sehr verschieden. W{\"a}hrend viele Bitterstoffe potente Gifte darstellen, sind andere in den Mengen, die mit der Nahrung aufgenommen werden, harmlos oder haben sogar positive Effekte auf den K{\"o}rper. Zwischen diesen Gruppen unterscheiden zu k{\"o}nnen, w{\"a}re f{\"u}r ein Tier von Vorteil. Ein solcher Mechanismus ist jedoch bei S{\"a}ugetieren nicht bekannt. Das Ziel dieser Arbeit war die Untersuchung der Verarbeitung von Geschmacksinformation in der ersten Station der Geschmacksbahn im Mausgehirn, dem Nucleus tractus solitarii (NTS), mit besonderem Augenmerk auf der Frage nach der Diskriminierung verschiedener Bitterstoffe. Zu diesem Zweck wurde eine neue Untersuchungsmethode f{\"u}r das Geschmackssystem etabliert, die die Nachteile bereits verf{\"u}gbarer Methoden umgeht und ihre Vorteile kombiniert. Die Arc-catFISH-Methode (cellular compartment analysis of temporal activity by fluorescent in situ hybridization), die die Charakterisierung der Antwort großer Neuronengruppen auf zwei Stimuli erlaubt, wurde zur Untersuchung geschmacksverarbeitender Zellen im NTS angewandt. Im Zuge dieses Projekts wurde erstmals eine stimulusinduzierte Arc-Expression im NTS gezeigt. Die ersten Ergebnisse offenbarten, dass die Arc-Expression im NTS spezifisch nach Stimulation mit Bitterstoffen auftritt und sich die Arc exprimierenden Neurone vornehmlich im gustatorischen Teil des NTS befinden. Dies weist darauf hin, dass Arc-Expression ein Marker f{\"u}r bitterverarbeitende gustatorische Neurone im NTS ist. Nach zweimaliger Stimulation mit Bittersubstanzen konnten {\"u}berlappende, aber verschiedene Populationen von Neuronen beobachtet werden, die unterschiedlich auf die drei verwendeten Bittersubstanzen Cycloheximid, Chininhydrochlorid und Cucurbitacin I reagierten. Diese Neurone sind vermutlich an der Steuerung von Abwehrreflexen beteiligt und k{\"o}nnten so die Grundlage f{\"u}r divergentes Verhalten gegen{\"u}ber verschiedenen Bitterstoffen bilden.}, language = {de} } @phdthesis{Born2012, author = {Born, Stephan}, title = {Kartierung der Bindungstasche des humanen Bittergeschmacksrezeptors hTAS2R10}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61392}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Die Bittergeschmacksrezeptoren stellen in der Superfamilie der G-Protein-gekoppelten Rezeptoren eine besondere Gruppe dar. Im Menschen k{\"o}nnen die 25 Rezeptoren eine große Anzahl unterschiedlichster Bittergeschmacksstoffe detektieren. Diese Substanzen k{\"o}nnen sowohl sch{\"a}dlich, wie etwa Strychnin, als auch der Gesundheit f{\"o}rderliche Arzneistoffe, wie etwa Chloramphenicol sein. Unter den Bittergeschmacksrezeptoren des Menschen gibt es eine Gruppe von drei Rezeptoren, die besonders viele Bitterstoffe detektieren k{\"o}nnen. Einer von ihnen ist der Rezeptor hTAS2R10. In dieser Arbeit konnte sowohl experimentell als auch durch computergest{\"u}tzte Modellierung gezeigt werden, dass der hTAS2R10 nur eine Bindungstasche besitzt. Das stimmt mit den bisher ausf{\"u}hrlich experimentell und in silico untersuchten Rezeptoren hTAS2R1, -R16, -R38 und -R46 {\"u}berein. Die f{\"u}r die Agonisteninteraktionen nachweislich wichtigen Transmembrandom{\"a}nen sind in den bisher untersuchten Bittergeschmacksrezeptoren, wie auch im hTAS2R10, die Transmembrandom{\"a}nen 3, 5, 6 und 7. Die Untersuchungen zeigten, dass die Bindungstasche des hTAS2R10 in der oberen H{\"a}lfte des zum extrazellul{\"a}ren Raum gerichteten Bereichs lokalisiert ist. Insbesondere konnte f{\"u}r die untersuchten Agonisten Strychnin, Parthenolid und Denatoniumbenzoat gezeigt werden, dass die Seitenketten der Aminos{\"a}uren in Position 3.29 und 5.40 ausgepr{\"a}gte agonistenselektive Wechselwirkungen eingehen. Weitere Untersuchungen haben ergeben, dass das weitgef{\"a}cherte Agonistenspektrum des hTAS2R10 zu Lasten der Sensitivit{\"a}t f{\"u}r einzelne Bitterstoffe geht. Der Vergleich wichtiger Positionen im hTAS2R10, hTAS2R46 und mTas2r105 hat deutlich gemacht, dass sich die Bindungsmodi zwischen diesen Rezeptoren unterscheiden. Dies deutet auf eine getrennte evolution{\"a}re Entwicklung der Bindungseigenschaften dieser Rezeptoren hin. Gleichfalls zeigten die Untersuchungen, dass einige Positionen wie z.B. 7.39 die Funktion aller untersuchten Bittergeschmacksrezeptoren pr{\"a}gen, sich jedoch die genaue Bedeutung im jeweiligen Rezeptor unterscheiden kann. Einzelne dieser Positionen konnten auch bei der Agonisteninteraktion des Rhodopsins und des β2-adrenergen Rezeptors beobachtet werden. Die Ergebnisse dieser Arbeit helfen dabei die Wechselwirkungen zwischen Bitterstoffen und den Bittergeschmacksrezeptoren zu verstehen und geben erste Einblicke in die Entwicklung der Rezeptoren in Hinblick auf ihren Funktionsmechanismus. Diese Erkenntnisse k{\"o}nnen genutzt werden, um Inhibitoren zu entwickeln, die sowohl ein wichtiges Werkzeug in der Rezeptoranalytik w{\"a}ren, als auch dazu genutzt werden k{\"o}nnten, den unerw{\"u}nschten bitteren Geschmack von Medikamenten oder gesundheitsf{\"o}rdernden sekund{\"a}ren Pflanzenstoffen zu mindern. Damit k{\"o}nnte ein Beitrag zur Gesundheit der Menschen geleistet werden.}, language = {de} } @phdthesis{Lossow2011, author = {Loßow, Kristina}, title = {Erzeugung und Charakterisierung von Mausmodellen mit lichtsensitivem Geschmackssystem zur Aufkl{\"a}rung der neuronalen Geschmackskodierung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-58059}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Die Wahrnehmung von Geschmacksempfindungen beruht auf dem Zusammenspiel verschiedener Sinneseindr{\"u}cke wie Schmecken, Riechen und Tasten. Diese Komplexit{\"a}t der gustatorischen Wahrnehmung erschwert die Beantwortung der Frage wie Geschmacksinformationen vom Mund ins Gehirn weitergeleitet, prozessiert und kodiert werden. Die Analysen zur neuronalen Prozessierung von Geschmacksinformationen erfolgten zumeist mit Bitterstimuli am Mausmodell. Zwar ist bekannt, dass das Genom der Maus f{\"u}r 35 funktionelle Bitterrezeptoren kodiert, jedoch war nur f{\"u}r zwei unter ihnen ein Ligand ermittelt worden. Um eine bessere Grundlage f{\"u}r tierexperimentelle Arbeiten zu schaffen, wurden 16 der 35 Bitterrezeptoren der Maus heterolog in HEK293T-Zellen exprimiert und in Calcium-Imaging-Experimenten funktionell charakterisiert. Die Daten belegen, dass das Funktionsspektrum der Bitterrezeptoren der Maus im Vergleich zum Menschen enger ist und widerlegen damit die Aussage, dass humane und murine orthologe Rezeptoren durch das gleiche Ligandenspektrum angesprochen werden. Die Interpretation von tierexperimentellen Daten und die {\"U}bertragbarkeit auf den Menschen werden folglich nicht nur durch die Komplexit{\"a}t des Geschmacks, sondern auch durch Speziesunterschiede verkompliziert. Die Komplexit{\"a}t des Geschmacks beruht u. a. auf der Tatsache, dass Geschmacksstoffe selten isoliert auftreten und daher eine Vielzahl an Informationen kodiert werden muss. Um solche geschmacksstoffassoziierten Stimuli in der Analyse der gustatorischen Kommunikationsbahnen auszuschließen, sollten Opsine, die durch Licht spezifischer Wellenl{\"a}nge angeregt werden k{\"o}nnen, f{\"u}r die selektive Ersetzung von Geschmacksrezeptoren genutzt werden. Um die Funktionalit{\"a}t dieser angestrebten Knockout-Knockin-Modelle zu evaluieren, die eine Kopplung von Opsinen mit dem geschmacksspezifischen G-Protein Gustducin voraussetzte, wurden Oozyten vom Krallenfrosch Xenopus laevis mit dem Zwei-Elektroden-Spannungsklemm-Verfahren hinsichtlich dieser Interaktion analysiert. Der positiven Bewertung dieser Kopplung folgte die Erzeugung von drei Mauslinien, die in der kodierenden Region eines spezifischen Geschmacksrezeptors (Tas1r1, Tas1r2, Tas2r114) Photorezeptoren exprimierten. Durch RT-PCR-, In-situ-Hybridisierungs- und immunhistochemische Experimente konnte der erfolgreiche Knockout der Rezeptorgene und der Knockin der Opsine belegt werden. Der Nachweis der Funktionalit{\"a}t der Opsine im gustatorischen System wird Gegenstand zuk{\"u}nftiger Analysen sein. Bei erfolgreichem Beleg der Lichtempfindlichkeit von Geschmacksrezeptorzellen dieser Mausmodelle w{\"a}re ein System geschaffen, dass es erm{\"o}glichen w{\"u}rde, gustatorische neuronale Netzwerke und Hirnareale zu identifizieren, die auf einen reinen geschmacks- und qualit{\"a}tsspezifischen Stimulus zur{\"u}ckzuf{\"u}hren w{\"a}ren.}, language = {de} } @phdthesis{Bufe2003, author = {Bufe, Bernd}, title = {Identifizierung und Charakterisierung von Bitterrezeptoren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001130}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Menschen nehmen Tausende von Stoffen als bitter wahr. Die chemische Struktur der verschiedenen Bitterstoffe ist sehr vielf{\"a}ltig: Sie reicht von kleinen Molek{\"u}len wie Kaliumchlorid oder Harnstoff, bis zu sehr komplexen organischen Verbindungen. Die Gr{\"o}ße der einzigen bekannten menschlichen Familie von Bitterrezeptoren (TAS2Rs) wurde auf nur ca. 80-120 Mitglieder gesch{\"a}tzt. In Anbetracht der hohen Zahl und Komplexit{\"a}t der Bitterstoffe erscheint die Zahl von Rezeptoren als sehr gering. Dies f{\"u}hrt nat{\"u}rlich zu einer Reihe von Fragen: Wie viele Mitglieder hat die menschliche TAS2R-Genfamilie? Wie viele verschiedene Substanzen k{\"o}nnen denselben Rezeptor aktivieren? Scheint die Zahl der TAS2R-Rezeptoren ausreichend, alle Bitterstoffe wahrnehmen zu k{\"o}nnen oder muss es noch andere Bitterrezeptorfamilien geben? Diese Fragen zu beantworten, ist das Ziel der vorliegenden Arbeit. Hier durchgef{\"u}hrte Analysen des menschlichen Genomprojektes zeigen, dass Menschen ca. 25 TAS2R-Rezeptoren besitzt, die eine sehr divergente Aminos{\"a}urestruktur aufweisen. Diese Rezeptoren wurden in eine neu entwickelte Expressionskassette kloniert, die den Transport des Rezeptors an die Zelloberfl{\"a}che erm{\"o}glicht. Um Liganden f{\"u}r die menschliche TAS2R-Rezeptoren zu identifizieren, wurden die Rezeptoren in HEK293 Zellen exprimiert und mit verschiedenen Bitterstoffen stimuliert. Der Nachweis der Rezeptoraktivierung erfolgte durch Calcium-Imaging. Es konnte gezeigt werden, dass hTAS2R16 der menschliche Rezeptor zur Wahrnehmung von Salicin und verwandten bitteren Pyranosiden ist. So wird hTAS2R16 in HEK293 Zellen durch Salicin und chemisch verwandte Substanzen aktiviert. Ein Vergleich der in diesem Messsystem erhaltenen Daten mit psychophysikalisch ermittelten Geschmackswahrnehmungen beim Menschen, ergab eine hohe {\"U}bereinstimmung. Die Ergebnisse deuten auch darauf hin, dass die Desensitiverung einzelner Rezeptoren die Ursache f{\"u}r die Adaption des Bittergeschmacks ist. Der Nachweis der Expression des Rezeptors in menschlichen Geschmackspapillen, sowie die festgestellte Assoziation des G/A Polymorpphismus an Position 665 des hTAS2R16 Gens mit einer reduzierten Salicinwahrnehmung, sind weitere unabh{\"a}ngige Beweise f{\"u}r diese These. Ein anderer menschlicher Rezeptor, hTAS2R10, wird durch die Bitterstoffe Strychnin, Brucin und Denatonium aktiviert. Dies sowie die Tatsache, dass die zur Aktivierung benutzten Konzentrationen eine sinnvolle Korrelation zu dem menschlichen Geschmacksschwellwert von Strychnin zeigen, sind starke Hinweise, dass hTAS2R10 der menschliche Rezeptor zur Wahrnehmung von Strychnin und verwandten Substanzen ist. Die vorliegenden Daten zeigen eindeutig, dass die TAS2R-Rezeptoren auch beim Menschen Bitterrezeptoren darstellen. Sowohl hTAS2R16, als auch hTAS2R10 werden durch ein Spektrum strukturell sehr unterschiedlicher Bitterstoffe aktiviert. Falls die anderen Mitglieder der TAS2R-Familie ebenfalls dieses Verhalten zeigen, w{\"a}re es m{\"o}glich, dass die nur ca. 25 Mitglieder umfassende TAS2R-Rezeptorfamilie des Menschen tats{\"a}chlich zur Wahrnehmung aller Bitterstoffe ausreicht.}, language = {de} }