@misc{WitzelNeugartRuppeletal.2015, author = {Witzel, Katja and Neugart, Susanne and Ruppel, Silke and Schreiner, Monika and Wiesner, Melanie and Baldermann, Susanne}, title = {Recent progress in the use of 'omics technologies in brassicaceous vegetables}, series = {Frontiers in plant science}, volume = {6}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2015.00244}, pages = {14}, year = {2015}, abstract = {Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub optimal irradiation. This review covers recent applications of omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality.}, language = {en} } @misc{PrueferKleuservanderGiet2015, author = {Pr{\"u}fer, Nicole and Kleuser, Burkhard and van der Giet, Markus}, title = {The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality}, series = {Biological chemistry}, volume = {396}, journal = {Biological chemistry}, number = {6-7}, publisher = {De Gruyter}, address = {Berlin}, issn = {1431-6730}, doi = {10.1515/hsz-2014-0192}, pages = {573 -- 583}, year = {2015}, abstract = {The high-density lipoprotein (HDL) is one of the most important endogenous cardiovascular protective markers. HDL is an attractive target in the search for new pharmaceutical therapies and in the prevention of cardiovascular events. Some of HDL's anti-atherogenic properties are related to the signaling molecule sphingosine-1-phosphate (S1P), which plays an important role in vascular homeostasis. However, for different patient populations it seems more complicated. Significant changes in HDL's protective potency are reduced under pathologic conditions and HDL might even serve as a proatherogenic particle. Under uremic conditions especially there is a change in the compounds associated with HDL. S1P is reduced and acute phase proteins such as serum amyloid A (SAA) are found to be elevated in HDL. The conversion of HDL in inflammation changes the functional properties of HDL. High amounts of SAA are associated with the occurrence of cardiovascular diseases such as atherosclerosis. SAA has potent pro-atherogenic properties, which may have impact on HDL's biological functions, including cholesterol efflux capacity, antioxidative and anti-inflammatory activities. This review focuses on two molecules that affect the functionality of HDL. The balance between functional and dysfunctional HDL is disturbed after the loss of the protective sphingolipid molecule S1P and the accumulation of the acute-phase protein SAA. This review also summarizes the biological activities of lipid-free and lipid-bound SAA and its impact on HDL function.}, language = {en} } @misc{OngvonWebskyHocher2015, author = {Ong, Albert C. M. and von Websky, Karoline and Hocher, Berthold}, title = {Endothelin and Tubulointerstitial Renal Disease}, series = {Seminars in nephrology}, volume = {35}, journal = {Seminars in nephrology}, number = {2}, publisher = {Elsevier}, address = {Philadelphia}, issn = {0270-9295}, doi = {10.1016/j.semnephrol.2015.03.004}, pages = {197 -- 207}, year = {2015}, abstract = {All components of the endothelin (ET) system are present in renal tubular cells. In this review, we summarize current knowledge about ET and the most common tubular diseases: acute kidney injury (AKI) and polycystic kidney disease. AKI originally was called acute tubular necrosis, pointing to the most prominent morphologic findings. Similarly, cysts in polycystic kidney disease, and especially in autosomal-dominant polycystic kidney disease, are of tubular origin. Preclinical studies have indicated that the ET system and particularly ETA receptors are involved in the pathogenesis of ischemia-reperfusion injury, although these findings have not been translated to clinical studies. The ET system also has been implicated in radiocontrast-dye-induced AKI, however, ET-receptor blockade in a large human study was not successful. The ET system is activated in sepsis models of AKI; the effectiveness of ET blocking agents in preclinical studies is variable depending on the model and the ET-receptor antagonist used. Numerous studies have shown that the ET system plays an important role in the complex pathophysiology associated with cyst formation and disease progression in polycystic kidney disease. However, results from selective targeting of ET-receptor subtypes in animal models of polycystic kidney disease have proved disappointing and do not support clinical trials. These studies have shown that a critical balance between ETA and ETB receptor action is necessary to maintain structure and function in the cystic kidney. In summary, ETs have been implicated in the pathogenesis of several renal tubulointerstitial diseases, however, experimental animal findings have not yet led to use of ET blockers in human beings. (C) 2015 Elsevier Inc. All rights reserved.}, language = {en} } @misc{Hasselhoff2015, author = {Hasselhoff, G{\"o}rge K.}, title = {Midrash Unbound. Transformations and Innovations}, series = {Zeitschrift f{\"u}r Religions- und Geistesgeschichte}, volume = {67}, journal = {Zeitschrift f{\"u}r Religions- und Geistesgeschichte}, number = {2}, publisher = {Brill}, address = {Leiden}, issn = {0044-3441}, pages = {205 -- 206}, year = {2015}, language = {de} }