@phdthesis{Radloff2018, author = {Radloff, Katrin}, title = {The role of the fatty acid profile and its modulation by cytokines in the systemic inflammation in cancer cachexia}, school = {Universit{\"a}t Potsdam}, pages = {156}, year = {2018}, abstract = {Systemic inflammation is a hallmark of cancer cachexia. Among tumor-host interactions, the white adipose tissue (WAT) is an important contributor to inflammation as it suffers morphological reorganization and lipolysis, releasing free fatty acids (FA), bioactive lipid mediators (LM) and pro-inflammatory cytokines, which accentuate the activation of pro-inflammatory signaling pathways and the recruitment of immune cells to the tissue. This project aimed to investigate which inflammatory factors are involved in the local adipose tissue inflammation and what is the influence of such factors upon enzymes involved in FA or LM metabolism in healthy individuals (Control), weight stable gastro-intestinal cancer patients (WSC) and cachectic cancer patients (CC). The results demonstrated that the inflammatory signature of systemic inflammation is different from local adipose tissue inflammation. The systemic inflammation of the cachectic cancer patients was characterized by higher levels of circulating saturated fatty acids (SFA), tumor-necrosis-factor-α (TNF-α), interleukins IL-6, IL-8 and CRP while levels of polyunsaturated fatty acids (PUFAs), especially n3-PUFAs, were lower in CC than in the other groups. In vitro and in adipose tissue explants, pro-inflammatory cytokines and SFAs were shown to increase the chemokines IL-8 and CXCL10 that were found to be augmented in adipose tissue inflammation in CC which was more profound in the visceral adipose tissue (VAT) than in subcutaneous adipose tissue (SAT). Systemic inflammation was negatively associated with the expression of PUFA synthesizing enzymes, though gene and protein expression did hardly differ between groups. The effects of inflammatory factors on enzymes in the whole tissue could have been masked by differentiated modulation of the diverse cell types in the same tissue. In vitro experiments showed that the expression of FA-modifying enzymes such as desaturases and elongases in adipocytes and macrophages was regulated into opposing directions by TNF-α, IL-6, LPS or palmitate. The higher plasma concentration of the pro-resolving LM resolvin D1 in CC cannot compensate the overall inflammatory status and the results indicate that inflammatory cytokines interfere with synthesis pathways of pro-resolving LM. In summary, the data revealed a complex inter-tissue and inter-cellular crosstalk mediated by pro-inflammatory cytokines and lipid compounds enhancing inflammation in cancer cachexia by feed-forward mechanisms.}, language = {en} }