@misc{ZoicasSchumacherKleuseretal.2020, author = {Zoicas, Iulia and Schumacher, Fabian and Kleuser, Burkhard and Reichel, Martin and Gulbins, Erich and Fejtova, Anna and Kornhuber, Johannes and Rhein, Cosima}, title = {The forebrain-specific overexpression of acid sphingomyelinase induces depressive-like symptoms in mice}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-52436}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524368}, pages = {14}, year = {2020}, abstract = {Human and murine studies identified the lysosomal enzyme acid sphingomyelinase (ASM) as a target for antidepressant therapy and revealed its role in the pathophysiology of major depression. In this study, we generated a mouse model with overexpression of Asm (Asm-tg(fb)) that is restricted to the forebrain to rule out any systemic effects of Asm overexpression on depressive-like symptoms. The increase in Asm activity was higher in male Asm-tg(fb) mice than in female Asm-tg(fb) mice due to the breeding strategy, which allows for the generation of wild-type littermates as appropriate controls. Asm overexpression in the forebrain of male mice resulted in a depressive-like phenotype, whereas in female mice, Asm overexpression resulted in a social anxiogenic-like phenotype. Ceramides in male Asm-tg(fb) mice were elevated specifically in the dorsal hippocampus. mRNA expression analyses indicated that the increase in Asm activity affected other ceramide-generating pathways, which might help to balance ceramide levels in cortical brain regions. This forebrain-specific mouse model offers a novel tool for dissecting the molecular mechanisms that play a role in the pathophysiology of major depression.}, language = {en} } @article{ZoicasSchumacherKleuseretal.2020, author = {Zoicas, Iulia and Schumacher, Fabian and Kleuser, Burkhard and Reichel, Martin and Gulbins, Erich and Fejtova, Anna and Kornhuber, Johannes and Rhein, Cosima}, title = {The forebrain-specific overexpression of acid sphingomyelinase induces depressive-like symptoms in mice}, series = {Cells}, volume = {9}, journal = {Cells}, number = {5}, publisher = {MDPI}, address = {Basel}, pages = {12}, year = {2020}, abstract = {Human and murine studies identified the lysosomal enzyme acid sphingomyelinase (ASM) as a target for antidepressant therapy and revealed its role in the pathophysiology of major depression. In this study, we generated a mouse model with overexpression of Asm (Asm-tg(fb)) that is restricted to the forebrain to rule out any systemic effects of Asm overexpression on depressive-like symptoms. The increase in Asm activity was higher in male Asm-tg(fb) mice than in female Asm-tg(fb) mice due to the breeding strategy, which allows for the generation of wild-type littermates as appropriate controls. Asm overexpression in the forebrain of male mice resulted in a depressive-like phenotype, whereas in female mice, Asm overexpression resulted in a social anxiogenic-like phenotype. Ceramides in male Asm-tg(fb) mice were elevated specifically in the dorsal hippocampus. mRNA expression analyses indicated that the increase in Asm activity affected other ceramide-generating pathways, which might help to balance ceramide levels in cortical brain regions. This forebrain-specific mouse model offers a novel tool for dissecting the molecular mechanisms that play a role in the pathophysiology of major depression.}, language = {en} } @article{ZizolaFreyJitngarmkusoletal.2010, author = {Zizola, C. F. and Frey, Simone K. and Jitngarmkusol, S. and Kadereit, Bert and Yan, N. and Vogel, Silke}, title = {Cellular retinol-binding protein type I (CRBP-I) regulates adipogenesis}, issn = {0270-7306}, doi = {10.1128/Mcb.00014-10}, year = {2010}, abstract = {Adipogenesis is governed by a well-documented cascade of transcription factors. However, less is known about non-transcription factors that govern early stages of adipogenesis. Here we show that cellular retinol-binding protein type I (CRBP-I), a small cytosolic binding protein for retinol and retinaldehyde, is specifically restricted to preadipocytes in white adipose tissue. The absence of CRBP-I in mice (CRBP-I-KO mice) leads to increased adiposity. Despite increased adiposity, CRBP-I-KO mice remain more glucose tolerant and insulin sensitive during high-fat-diet feeding. 3T3-L1 cells deficient in CRBP-I or mouse embryonic fibroblasts derived from CRBP-I-KO mice had increased adipocyte differentiation and triglyceride (TG) accumulation. This was due to increased expression and activity of PPAR gamma, while other transcription factor pathways in early and late differentiation remained unchanged. Conversely, the overexpression of CRBP-I in 3T3-L1 cells results in decreased TG accumulation. In conclusion, CRBP-I is a cytosolic protein specifically expressed in preadipocytes that regulates adipocyte differentiation in part by affecting PPAR gamma activity.}, language = {en} } @article{ZirafiKimStaendkeretal.2015, author = {Zirafi, Onofrio and Kim, Kyeong-Ae and St{\"a}ndker, Ludger and Mohr, Katharina B. and Sauter, Daniel and Heigele, Anke and Kluge, Silvia F. and Wiercinska, Eliza and Chudziak, Doreen and Richter, Rudolf and M{\"o}pps, Barbara and Gierschik, Peter and Vas, Virag and Geiger, Hartmut and Lamla, Markus and Weil, Tanja and Burster, Timo and Zgraja, Andreas and Daubeuf, Francois and Frossard, Nelly and Hachet-Haas, Muriel and Heunisch, Fabian and Reichetzeder, Christoph and Galzi, Jean-Luc and Perez-Castells, Javier and Canales-Mayordomo, Angeles and Jimenez-Barbero, Jesus and Gimenez-Gallego, Guillermo and Schneider, Marion and Shorter, James and Telenti, Amalio and Hocher, Berthold and Forssmann, Wolf-Georg and Bonig, Halvard and Kirchhoff, Frank and M{\"u}nch, Jan}, title = {Discovery and Characterization of an Endogenous CXCR4 Antagonist}, series = {Cell reports}, volume = {11}, journal = {Cell reports}, number = {5}, publisher = {Cell Press}, address = {Cambridge}, issn = {2211-1247}, doi = {10.1016/j.celrep.2015.03.061}, pages = {737 -- 747}, year = {2015}, abstract = {CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.}, language = {en} } @phdthesis{Ziemann2020, author = {Ziemann, Vanessa}, title = {Toxische Effekte von Arsenolipiden in humanen Kulturzellen und Caenorhabditis elegans}, school = {Universit{\"a}t Potsdam}, pages = {112}, year = {2020}, language = {de} } @article{ZhouZhangGuietal.2015, author = {Zhou, Ying and Zhang, Ling and Gui, Jiadong and Dong, Fang and Cheng, Sihua and Mei, Xin and Zhang, Linyun and Li, Yongqing and Su, Xinguo and Baldermann, Susanne and Watanabe, Naoharu and Yang, Ziyin}, title = {Molecular Cloning and Characterization of a Short-Chain Dehydrogenase Showing Activity with Volatile Compounds Isolated from Camellia sinensis}, series = {Plant molecular biology reporter}, volume = {33}, journal = {Plant molecular biology reporter}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0735-9640}, doi = {10.1007/s11105-014-0751-z}, pages = {253 -- 263}, year = {2015}, abstract = {Camellia sinensis synthesizes and emits a large variety of volatile phenylpropanoids and benzenoids (VPB). To investigate the enzymes involved in the formation of these VPB compounds, a new C. sinensis short-chain dehydrogenase/reductase (CsSDR) was isolated, cloned, sequenced, and functionally characterized. The complete open reading frame of CsSDR contains 996 nucleotides with a calculated protein molecular mass of 34.5 kDa. The CsSDR recombinant protein produced in Escherichia coli exhibited dehydrogenase-reductase activity towards several major VPB compounds in C. sinensis flowers with a strong preference for NADP/NADPH co-factors, and showed affinity for (R)/(S)-1-phenylethanol (1PE), phenylacetaldehyde, benzaldehyde, and benzyl alcohol, and no affinity for acetophenone (AP) and 2-phenylethanol. CsSDR showed the highest catalytic efficiency towards (R)/(S)-1PE. Furthermore, the transient expression analysis in Nicotiana benthamiana plants validated that CsSDR could convert 1PE to AP in plants. CsSDR transcript level was not significantly affected by floral development and some jasmonic acid-related environmental stress, and CsSDR transcript accumulation was detected in most floral tissues such as receptacle and anther, which were main storage locations of VPB compounds. Our results indicate that CsSDR is expressed in C. sinensis flowers and is likely to contribute to a number of floral VPB compounds including the 1PE derivative AP.}, language = {en} } @article{ZhouZengFuetal.2016, author = {Zhou, Ying and Zeng, Lanting and Fu, Xiumin and Mei, Xin and Cheng, Sihua and Liao, Yinyin and Deng, Rufang and Xu, Xinlan and Jiang, Yueming and Duan, Xuewu and Baldermann, Susanne and Yang, Ziyin}, title = {The sphingolipid biosynthetic enzyme Sphingolipid delta8 desaturase is important for chilling resistance of tomato}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep38742}, pages = {10}, year = {2016}, abstract = {The physiological functions of sphingolipids in animals have been intensively studied, while less attention has been paid to their roles in plants. Here, we reveal the involvement of sphingolipid delta8 desaturase (SlSLD) in the chilling resistance of tomato (Solanum lycopersicum cv. Micro-Tom). We used the virus-induced gene silencing (VIGS) approach to knock-down SlSLD expression in tomato leaves, and then evaluated chilling resistance. Changes in leaf cell structure under a chilling treatment were observed by transmission electron microscopy. In control plants, SlSLD was highly expressed in the fruit and leaves in response to a chilling treatment. The degree of chilling damage was greater in SlSLD-silenced plants than in control plants, indicating that SlSLD knock-down significantly reduced the chilling resistance of tomato. Compared with control plants, SlSLD-silenced plants showed higher relative electrolytic leakage and malondialdehyde content, and lower superoxide dismutase and peroxidase activities after a chilling treatment. Chilling severely damaged the chloroplasts in SlSLD-silenced plants, resulting in the disruption of chloroplast membranes, swelling of thylakoids, and reduced granal stacking. Together, these results show that SlSLD is crucial for chilling resistance in tomato.}, language = {en} } @article{ZhouPanZhangetal.2020, author = {Zhou, Suqiong and Pan, Yuanwei and Zhang, Jianguang and Li, Yan and Neumann, Falko and Schwerdtle, Tanja and Li, Wenzhong and Haag, Rainer}, title = {Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells}, series = {Nanoscale}, volume = {12}, journal = {Nanoscale}, number = {47}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/d0nr06570f}, pages = {24006 -- 24019}, year = {2020}, abstract = {Nanomaterials play an important role in mimicking the biochemical and biophysical cues of the extracellular matrix in human mesenchymal stem cells (MSCs). Increasing studies have demonstrated the crucial impact of functional groups on MSCs, while limited research is available on how the functional group's density on nanoparticles regulates MSC behavior. Herein, the effects of dendritic polyglycerol (dPG)-conjugated gold nanostars (GNSs) with different densities of functional groups on the osteogenesis of MSCs are systematically investigated. dPG@GNS nanocomposites have good biocompatibility and the uptake by MSCs is in a functional group density-dependent manner. The osteogenic differentiation of MSCs is promoted by all dPG@GNS nanocomposites, in terms of alkaline phosphatase activity, calcium deposition, and expression of osteogenic protein and genes. Interestingly, the dPGOH@GNSs exhibit a slight upregulation in the expression of osteogenic markers, while the different charged densities of sulfate and amino groups show more efficacy in the promotion of osteogenesis. Meanwhile, the sulfated nanostars dPGS20@GNSs show the highest enhancement. Furthermore, various dPG@GNS nanocomposites exerted their effects by regulating the activation of Yes-associated protein (YAP) to affect osteogenic differentiation. These results indicate that dPG@GNS nanocomposites have functional group density-dependent influence on the osteogenesis of MSCs, which may provide a new insight into regulating stem cell fate.}, language = {en} } @article{ZhengLuanSofianopoulouetal.2020, author = {Zheng, Ju-Sheng and Luan, Jian'an and Sofianopoulou, Eleni and Imamura, Fumiaki and Stewart, Isobel D. and Day, Felix R. and Pietzner, Maik and Wheeler, Eleanor and Lotta, Luca A. and Gundersen, Thomas E. and Amiano, Pilar and Ardanaz, Eva and Chirlaque, Maria-Dolores and Fagherazzi, Guy and Franks, Paul W. and Kaaks, Rudolf and Laouali, Nasser and Mancini, Francesca Romana and Nilsson, Peter M. and Onland-Moret, N. Charlotte and Olsen, Anja and Overvad, Kim and Panico, Salvatore and Palli, Domenico and Ricceri, Fulvio and Rolandsson, Olov and Spijkerman, Annemieke M. W. and Sanchez, Maria-Jose and Schulze, Matthias B. and Sala, Nuria and Sieri, Sabina and Tjonneland, Anne and Tumino, Rosario and van der Schouw, Yvonne T. and Weiderpass, Elisabete and Riboli, Elio and Danesh, John and Butterworth, Adam S. and Sharp, Stephen J. and Langenberg, Claudia and Forouhi, Nita G. and Wareham, Nicholas J.}, title = {Plasma vitamin C and type 2 diabetes}, series = {Diabetes care}, volume = {44}, journal = {Diabetes care}, number = {1}, publisher = {American Diabetes Association}, address = {Alexandria}, issn = {0149-5992}, doi = {10.2337/dc20-1328}, pages = {98 -- 106}, year = {2020}, abstract = {OBJECTIVE: Higher plasma vitamin C levels are associated with lower type 2 diabetes risk, but whether this association is causal is uncertain. To investigate this, we studied the association of genetically predicted plasma vitamin C with type 2 diabetes. RESEARCH DESIGN AND METHODS: We conducted genome-wide association studies of plasma vitamin C among 52,018 individuals of European ancestry to discover novel genetic variants. We performed Mendelian randomization analyses to estimate the association of genetically predicted differences in plasma vitamin C with type 2 diabetes in up to 80,983 case participants and 842,909 noncase participants. We compared this estimate with the observational association between plasma vitamin C and incident type 2 diabetes, including 8,133 case participants and 11,073 noncase participants. RESULTS: We identified 11 genomic regions associated with plasma vitamin C (P < 5 x 10(-8)), with the strongest signal at SLC23A1, and 10 novel genetic loci including SLC23A3, CHPT1, BCAS3, SNRPF, RER1, MAF, GSTA5, RGS14, AKT1, and FADS1. Plasma vitamin C was inversely associated with type 2 diabetes (hazard ratio per SD 0.88; 95\% CI 0.82, 0.94), but there was no association between genetically predicted plasma vitamin C (excluding FADS1 variant due to its apparent pleiotropic effect) and type 2 diabetes (1.03; 95\% CI 0.96, 1.10). CONCLUSIONS: These findings indicate discordance between biochemically measured and genetically predicted plasma vitamin C levels in the association with type 2 diabetes among European populations. The null Mendelian randomization findings provide no strong evidence to suggest the use of vitamin C supplementation for type 2 diabetes prevention.}, language = {en} } @misc{ZeiherDuchKrolletal.2019, author = {Zeiher, Johannes and Duch, M. and Kroll, Lars Eric and Mensink, Gerhardus Bernardus Maria and Finger, Jonas David and Keil, Thomas}, title = {Domain-specific physical activity patterns and cardiorespiratory fitness among adults in Germany}, series = {The European Journal of Public Health}, volume = {29}, journal = {The European Journal of Public Health}, number = {Supplement. 4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1101-1262}, pages = {1}, year = {2019}, abstract = {Background Studies show that occupational physical activity (OPA) has less health-enhancing effects than leisure-time physical activity (LTPA). The spare data available suggests that OPA rarely includes aerobic PAs with little or no enhancing effects on cardiorespiratory fitness (CRF) as a possible explanation. This study aims to investigate the associations between patterns of OPA and LTPA and CRF among adults in Germany. Methods 1,204 men and 1,303 women (18-64 years), who participated in the German Health Interview and Examination Survey 2008-2011, completed a standardized sub-maximal cycle ergometer test to estimate maximal oxygen consumption (VO2max). Job positions were coded according to the level of physical effort to construct an occupational PA index and categorized as low vs. high OPA. LTPA was assessed via questionnaires and dichotomized in no vs. any LTPA participation. A combined LTPA/OPA variable was used (high OPA/ LTPA, low OPA/LTPA, high OPA/no LTPA, low OPA/no LTPA). Information on potential confounders was obtained via questionnaires (e.g., smoking and education) or physical measurements (e.g., waist circumference). Multi-variable logistic regression was used to analyze associations between OPA/LTPA patterns and VO2max. Results Preliminary analyses showed that less-active men were more likely to have a low VO2max with odds ratios (ORs) of 0.80 for low OPA/LTPA, 1.84 for high OPA/no LTPA and 3.46 for low OPA/no LTPA compared to high OPA/LTPA. The corresponding ORs for women were 1.11 for low OPA/LTPA, 3.99 for high OPA/no LTPA and 2.44 for low OPA/no LTPA, indicating the highest likelihood of low fitness for women working in physically demanding jobs and not engaging in LTPA. Conclusions Findings confirm a strong association between LTPA and CRF and suggest an interaction between OPA and LTPA patterns on CRF within the workforce in Germany. Women without LTPA are at high risk of having a low CRF, especially if they work in physically demanding jobs. Key messages Women not practicing leisure-time physical activity are at risk of having a low cardiorespiratory fitness, especially if they work in physically demanding jobs. Different impact of domains of physical activity should be considered when planning interventions to enhance fitness among the adult population.}, language = {en} }