@misc{BaldermannHomannNeugartetal.2018, author = {Baldermann, Susanne and Homann, Thomas and Neugart, Susanne and Chmielewski, Frank M. and G{\"o}tz, Klaus-Peter and G{\"o}deke, Kristin and Huschek, Gerd and Morlock, Gertrud E. and Rawel, Harshadrai Manilal}, title = {Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds (Prunus avium L.)}, series = {Molecules}, journal = {Molecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417442}, pages = {19}, year = {2018}, abstract = {Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.}, language = {en} } @article{BaldermannHomannNeugartetal.2018, author = {Baldermann, Susanne and Homann, Thomas and Neugart, Susanne and Chmielewski, Frank M. and G{\"o}tz, Klaus-Peter and G{\"o}deke, Kristin and Huschek, Gerd and Morlock, Gertrud E. and Rawel, Harshadrai Manilal}, title = {Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds (Prunus avium L.)}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {5}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules23051197}, pages = {1 -- 19}, year = {2018}, abstract = {Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.}, language = {en} } @misc{BeckerRiethmuellerSeitzetal.2018, author = {Becker, Katrin Anne and Riethmueller, Joachim and Seitz, Aaron P. and Gardner, Aaron and Boudreau, Ryan and Kamler, Markus and Kleuser, Burkhard and Schuchman, Edward and Caldwell, Charles C. and Edwards, Michael J. and Grassme, Heike and Brodlie, Malcolm and Gulbins, Erich}, title = {Sphingolipids as targets for inhalation treatment of cystic fibrosis}, series = {Advanced drug delivery reviews}, volume = {133}, journal = {Advanced drug delivery reviews}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-409X}, doi = {10.1016/j.addr.2018.04.015}, pages = {66 -- 75}, year = {2018}, abstract = {Studies over the past several years have demonstrated the important role of sphingolipids in cystic fibrosis (CF), chronic obstructive pulmonary disease and acute lung injury. Ceramide is increased in airway epithelial cells and alveolar macrophages of CF mice and humans, while sphingosine is dramatically decreased. This increase in ceramide results in chronic inflammation, increased death of epithelial cells, release of DNA into the bronchial lumen and thereby an impairment of mucociliary clearance; while the lack of sphingosine in airway epithelial cells causes high infection susceptibility in CF mice and possibly patients. The increase in ceramide mediates an ectopic expression of beta 1-integrins in the luminal membrane of CF epithelial cells, which results, via an unknown mechanism, in a down-regulation of acid ceramidase. It is predominantly this down-regulation of acid ceramidase that results in the imbalance of ceramide and sphingosine in CF cells. Correction of ceramide and sphingosine levels can be achieved by inhalation of functional acid sphingomyelinase inhibitors, recombinant acid ceramidase or by normalization of beta 1-integrin expression and subsequent re-expression of endogenous acid ceramidase. These treatments correct pulmonary inflammation and prevent or treat, respectively, acute and chronic pulmonary infections in CF mice with Staphylococcus aureus and mucoid or non-mucoid Pseudomonas aeruginosa. Inhalation of sphingosine corrects sphingosine levels only and seems to mainly act against the infection. Many antidepressants are functional inhibitors of the acid sphingomyelinase and were designed for systemic treatment of major depression. These drugs could be repurposed to treat CF by inhalation.}, language = {en} } @phdthesis{Bertz2018, author = {Bertz, Martin}, title = {Funktion von Selenoproteinen  w{\"a}hrend der kolorektalen Karzinogenese}, doi = {10.25932/publishup-42780}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427808}, school = {Universit{\"a}t Potsdam}, pages = {VII, 109}, year = {2018}, abstract = {Kolorektalkrebs (CRC) ist die dritth{\"a}ufigste Tumorerkrankung weltweit. Neben dem Alter spielt auch die Ern{\"a}hrung eine wichtige Rolle bei der Entstehung der Krankheit. Eine vermutlich krebspr{\"a}ventive Wirkung wird dabei dem Spurenelement Selen zugeschrieben, das fast ausschließlich {\"u}ber Lebensmittel aufgenommen wird. So h{\"a}ngt beispielsweise ein niedriger Selenstatus mit dem Risiko, im Laufe des Lebens an CRC zu erkranken, zusammen. Seine Funktionen vermittelt Selen dabei {\"u}berwiegend durch Selenoproteine, in denen es in Form von Selenocystein eingebaut wird. Zu den bisher am besten untersuchten Selenoproteinen mit m{\"o}glicher Funktion w{\"a}hrend CRC z{\"a}hlen die Glutathionperoxidasen (GPXen). Die Mitglieder dieser Familie tragen aufgrund ihrer Hydroperoxid-reduzierenden Eigenschaften entscheidend zum Schutz der Zellen vor oxidativem Stress bei. Dies kann je nach Art und Stadium des Tumors entweder krebshemmend oder -f{\"o}rdernd wirken, da auch transformierte Zellen von dieser Schutzfunktion profitieren. In dieser Arbeit wurde die GPX2 in HT29-Darmkrebszellen mithilfe stabil-transfizierter shRNA herunterreguliert, um die Funktion des Enzyms vor allem in Hinblick auf regulierte Signalwege zu untersuchen. Ein Knockdowns (KD) der strukturell {\"a}hnlichen GPX1 kam ebenfalls zum Einsatz, um gezielt Isoform-spezifische Funktionen unterscheiden zu k{\"o}nnen. Anhand eines PCR-Arrays wurden Signalwege identifiziert, die auf einen Einfluss der beiden Proteine im Zellwachstum hindeuteten. Anschließende Untersuchungen ließen auf einen verminderten Differenzierungsstatus in den GPX1- und GPX2-KDs aufgrund einer geringeren Aktivit{\"a}t der Alkalischen Phosphatase schließen. Zudem war die Zellviabilit{\"a}t im Neutralrot-Assay (NRU) bei Fehlen der GPX1 bzw. GPX2 im Vergleich zur Kontrolle reduziert. Die Ergebnisse des PCR-Arrays, und speziell f{\"u}r die GPX2 fr{\"u}here Untersuchungen der Arbeitsgruppe, wiesen weiterhin auf eine Rolle der beiden Proteine in der entz{\"u}ndungsgetriebenen Karzinogenese hin. Daher wurden auch m{\"o}gliche Interaktionen mit dem NFκB-Signalweg analysiert. Eine Stimulation der Zellen mit dem proinflammatorischen Zytokin IL1β ging mit einer verst{\"a}rkten Aktivierung der MAP-Kinasen ERK1/2 in den Zellen mit GPX1- bzw. GPX2-KD einher. Die gleichzeitige Behandlung mit dem Antioxidans NAC f{\"u}hrte nicht zur R{\"u}cknahme der Effekte in den KDs, sodass m{\"o}glicherweise nicht nur die antioxidativen Eigenschaften der Enzyme bei der Interaktion mit diesen Signalwegsproteinen relevant sind. Weiterhin wurden Analysen zum Substratspektrum der GPX2 in HCT116-Zellen mit einer {\"U}berexpression des Proteins durchgef{\"u}hrt. Dabei zeigte sich mittels NRU-Assay und DNA-Laddering, dass die GPX2 besonders vor den proapoptotischen Effekten einer Behandlung mit den Lipidhydroperoxiden HPODE und HPETE sch{\"u}tzt. Im Gegensatz zur GPX2 l{\"a}sst sich Selenoprotein H (SELENOH) st{\"a}rker durch die aliment{\"a}re Selenzufuhr beeinflussen. Einer m{\"o}glichen Nutzung als Biomarker oder gar als Ansatzpunkt bei der Pr{\"a}vention bzw. Behandlung von CRC steht allerdings unvollst{\"a}ndiges Wissen {\"u}ber die Funktion des Proteins gegen{\"u}ber. Zur genaueren Charakterisierung von SELENOH wurden daher stabil-transfizierte KD-Klone in HT29- und Caco2-Zellen hergestellt und zun{\"a}chst auf ihre Tumorigenit{\"a}t untersucht. Zellen mit SELENOH-KD bildeten mehr und gr{\"o}ßere Kolonien im Soft Agar und zeigten ein erh{\"o}htes Proliferations- und Migrationspotenzial im Vergleich zur Kontrolle. Ein Xenograft in Nacktm{\"a}usen resultierte zudem in einer st{\"a}rkeren Tumorbildung nach Injektion von KD-Zellen. Untersuchungen zur Beteiligung von SELENOH an der Zellzyklusregulation deuten auf eine hemmende Rolle des Proteins in der G1/S-Phase hin. Die weiterhin beobachtete Hochregulation von SELENOH in humanen Adenokarzinomen und pr{\"a}kanzer{\"o}sem Mausgewebe l{\"a}sst sich m{\"o}glicherweise mit der postulierten Schutzfunktion vor oxidativen Zell- und DNA-Sch{\"a}den erkl{\"a}ren. In gesunden Darmepithelzellen war das Protein vorrangig am Kryptengrund lokalisiert, was zu einer potenziellen Rolle w{\"a}hrend der gastrointestinalen Differenzierung passt.}, language = {de} } @misc{BornhorstKippHaaseetal.2018, author = {Bornhorst, Julia and Kipp, Anna P. and Haase, Hajo and Meyer, Soeren and Schwerdtle, Tanja}, title = {The crux of inept biomarkers for risks and benefits of trace elements}, series = {Trends in Analytical Chemistry}, volume = {104}, journal = {Trends in Analytical Chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0165-9936}, doi = {10.1016/j.trac.2017.11.007}, pages = {183 -- 190}, year = {2018}, abstract = {Nowadays, the role of trace elements (TE) is of growing interest because dyshomeostasis of selenium (Se), manganese (Mn), zinc (Zn), and copper (Cu) is supposed to be a risk factor for several diseases. Thereby, research focuses on identifying new biomarkers for the TE status to allow for a more reliable description of the individual TE and health status. This review mirrors a lack of well-defined, sensitive, and selective biomarkers and summarizes technical limitations to measure them. Thus, the capacity to assess the relationship between dietary TE intake, homeostasis, and health is restricted, which would otherwise provide the basis to define adequate intake levels of single TE in both healthy and diseased humans. Besides that, our knowledge is even more limited with respect to the real life situation of combined TE intake and putative interactions between single TE.}, language = {en} } @article{CastroWardelmannGruneetal.2018, author = {Castro, Jose Pedro and Wardelmann, Kristina and Grune, Tilman and Kleinridders, Andre}, title = {Mitochondrial Chaperones in the Brain}, series = {Frontiers in Endocrinology}, volume = {9}, journal = {Frontiers in Endocrinology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-2392}, doi = {10.3389/fendo.2018.00196}, pages = {13}, year = {2018}, abstract = {The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurode-generative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.}, language = {en} } @misc{CastroWardelmannGruneetal.2018, author = {Castro, Jos{\´e} Pedro and Wardelmann, Kristina and Grune, Tilman and Kleinridders, Andr{\´e}}, title = {Mitochondrial chaperones in the brain}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1031}, issn = {1866-8372}, doi = {10.25932/publishup-46065}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460650}, pages = {15}, year = {2018}, abstract = {The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurode-generative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.}, language = {en} } @article{ChaykovskaHeunischvonEinemetal.2018, author = {Chaykovska, Lyubov and Heunisch, Fabian and von Einem, Gina and Hocher, Carl-Friedrich and Tsuprykov, Oleg and Pavkovic, Mira and Sandner, Peter and Kretschmer, Axel and Chu, Chang and Elitok, Saban and Stasch, Johannes-Peter and Hocher, Berthold}, title = {Urinary cGMP predicts major adverse renal events in patients with mild renal impairment and/or diabetes mellitus before exposure to contrast medium}, series = {PLoS one}, volume = {13}, journal = {PLoS one}, number = {4}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0195828}, pages = {13}, year = {2018}, abstract = {Background The use of iodine-based contrast agents entails the risk of contrast induced nephropathy (CIN). Radiocontrast agents elicit the third most common cause of nephropathy among hospitalized patients, accounting for 11-12\% of cases. CIN is connected with clinically significant consequences, including increased morbidity, prolonged hospitalization, increased risk of complications, potential need for dialysis, and increased mortality rate. The number of in hospital examinations using iodine-based contrast media has been significantly increasing over the last decade. In order to protect patients from possible complications of such examinations, new biomarkers are needed that are able to predict a risk of contrast-induced nephropathy. Urinary and plasma cyclic guanosine monophosphate (cGMP) concentrations are influenced by renal function. Urinary cGMP is primarily of renal cellular origin. Therefore, we assessed if urinary cGMP concentration may predict major adverse renal events (MARE) after contrast media exposure during coronary angiography. Methods Urine samples were prospectively collected from non-randomized consecutive patients with either diabetes or preexisting impaired kidney function receiving intra-arterial contrast medium (CM) for emergent or elective coronary angiography at the Charite Campus Mitte, University Hospital Berlin. Urinary cGMP concentration in spot urine was analyzed 24 hours after CM exposure. Patients were followed up over 90 days for occurrence of death, initiation of dialysis, doubling of plasma creatinine concentration or MARE. Results In total, 289 consecutive patients were included into the study. Urine cGMP/creatinine ratio 24 hours before CM exposure expressed as mean +/- SD was predictive for the need of dialysis (no dialysis: 89.77 +/- 92.85 mu M/mM, n = 277; need for dialysis: 140.3 +/- 82.90 mu M/mM, n = 12, p = 0.008), death (no death during follow-up: 90.60 +/- 92.50 mu M/mM, n = 280; death during follow-up: 169.88 +/- 81.52 mu M/mM, n = 9; p = 0.002), and the composite endpoint MARE (no MARE: 86.02 +/- 93.17 mu M/mM, n = 271; MARE: 146.64 +/- 74.68 mu M/mM, n = 18, p<0.001) during the follow-up of 90 days after contrast media application. cGMP/creatinine ratio stayed significantly increased at values exceeding 120 pM/mM in patients who developed MARE, required dialysis or died. Conclusions Urinary cGMP/creatinine ratio >= 120 mu M/mM before CM exposure is a promising biomarker for the need of dialysis and all-cause mortality 90 days after CM exposure in patients with preexisting renal impairment or diabetes.}, language = {en} } @misc{ChenBornhorstNeelyetal.2018, author = {Chen, Pan and Bornhorst, Julia and Neely, M. Diana and Avila, Daiana Silva}, title = {Mechanisms and disease pathogenesis underlying metal-induced oxidative stress}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1045}, issn = {1866-8372}, doi = {10.25932/publishup-46786}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-467869}, pages = {5}, year = {2018}, language = {en} } @misc{ChenBornhorstNeelyetal.2018, author = {Chen, Pan and Bornhorst, Julia and Neely, M. Diana and Avila, Daiana Silva}, title = {Mechanisms and Disease Pathogenesis Underlying Metal-Induced Oxidative Stress}, series = {Oxidative Medicine and Cellular Longevity}, journal = {Oxidative Medicine and Cellular Longevity}, publisher = {Hindawi}, address = {London}, issn = {1942-0900}, doi = {10.1155/2018/7612172}, pages = {3}, year = {2018}, language = {en} }