@article{GereckeScholtkaLoewensteinetal.2015, author = {Gerecke, Christian and Scholtka, Bettina and Loewenstein, Yvonne and Fait, Isabel and Gottschalk, Uwe and Rogoll, Dorothee and Melcher, Ralph and Kleuser, Burkhard}, title = {Hypermethylation of ITGA4, TFPI2 and VIMENTIN promoters is increased in inflamed colon tissue: putative risk markers for colitis-associated cancer}, series = {Journal of cancer research and clinical oncology : official organ of the Deutsche Krebsgesellschaft}, volume = {141}, journal = {Journal of cancer research and clinical oncology : official organ of the Deutsche Krebsgesellschaft}, number = {12}, publisher = {Springer}, address = {New York}, issn = {0171-5216}, doi = {10.1007/s00432-015-1972-8}, pages = {2097 -- 2107}, year = {2015}, abstract = {Epigenetic silencing of tumor suppressor genes is involved in early transforming events and has a high impact on colorectal carcinogenesis. Likewise, colon cancers that derive from chronically inflamed bowel diseases frequently exhibit epigenetic changes. But there is little data about epigenetic aberrations causing colorectal cancer in chronically inflamed tissue. The aim of the present study was to evaluate the aberrant gain of methylation in the gene promoters of VIM, TFPI2 and ITGA4 as putative early markers in the development from inflamed tissue via precancerous lesions toward colorectal cancer. Initial screening of different cancer cell lines by using methylation-specific PCR revealed a putative colon cancer-specific methylation pattern. Additionally, a demethylation assay was performed to investigate the methylation-dependent gene silencing of ITGA4. The candidate markers were analyzed in colonic tissue specimens from patients with colorectal cancer (n = 15), adenomas (n = 76), serrated lesions (n = 13), chronic inflammation (n = 10) and normal mucosal samples (n = 9). A high methylation frequency of VIM (55.6 \%) was observed in normal colon tissue, whereas ITGA4 and TFPI2 were completely unmethylated in controls. A significant gain of methylation frequency with progression of disease as well as an age-dependent effect was detectable for TFPI2. ITGA4 methylation frequency was high in precancerous and cancerous tissues as well as in inflammatory bowel diseases (IBD). The already established methylation marker VIM does not permit a specific and sensitive discrimination of healthy and neoplastic tissue. The methylation markers ITGA4 and TFPI2 seem to be suitable risk markers for inflammation-associated colon cancer.}, language = {en} } @article{GereckeMascherGottschalketal.2013, author = {Gerecke, Christian and Mascher, Conny and Gottschalk, Uwe and Kleuser, Burkhard and Scholtka, Bettina}, title = {Ultrasensitive detection of unknown colon cancer-initiating mutations using the example of the adenomatous polyposis coli gene}, series = {Cancer prevention research}, volume = {6}, journal = {Cancer prevention research}, number = {9}, publisher = {American Association for Cancer Research}, address = {Philadelphia}, issn = {1940-6207}, doi = {10.1158/1940-6207.CAPR-13-0145}, pages = {898 -- 907}, year = {2013}, abstract = {Detection of cancer precursors contributes to cancer prevention, for example, in the case of colorectal cancer. To record more patients early, ultrasensitive methods are required for the purpose of noninvasive precursor detection in body fluids. Our aim was to develop a method for enrichment and detection of known as well as unknown driver mutations in the Adenomatous polyposis coli (APC) gene. By coupled wild-type blocking (WTB) PCR and high-resolution melting (HRM), referred to as WTB-HRM, a minimum detection limit of 0.01\% mutant in excess wild-type was achieved according to as little as 1 pg mutated DNA in the assay. The technique was applied to 80 tissue samples from patients with colorectal cancer (n = 17), adenomas (n = 50), serrated lesions (n = 8), and normal mucosa (n = 5). Any kind of known and unknown APC mutations (deletions, insertions, and base exchanges) being situated inside the mutation cluster region was distinguishable from wild-type DNA. Furthermore, by WTB-HRM, nearly twice as many carcinomas and 1.5 times more precursor lesions were identified to be mutated in APC, as compared with direct sequencing. By analyzing 31 associated stool DNA specimens all but one of the APC mutations could be recovered. Transferability of the WTB-HRM method to other genes was proven using the example of KRAS mutation analysis. In summary, WTB-HRM is a new approach for ultrasensitive detection of cancer-initiating mutations. In this sense, it appears especially applicable for noninvasive detection of colon cancer precursors in body fluids with excess wild-type DNA like stool. Cancer Prev Res; 6(9); 898-907. (C) 2013 AACR.}, language = {en} }