@article{KretzschmarHaubitzHuebneretal.2018, author = {Kretzschmar, Jerome and Haubitz, Toni and Huebner, Rene and Weiss, Stephan and Husar, Richard and Brendler, Vinzenz and Stumpf, Thorsten}, title = {Network-like arrangement of mixed-valence uranium oxide nanoparticles after glutathione-induced reduction of uranium(VI)}, series = {Chemical communications}, volume = {54}, journal = {Chemical communications}, number = {63}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c8cc02070a}, pages = {8697 -- 8700}, year = {2018}, abstract = {Glutathione (GSH), a ubiquitous intracellular reducing tripeptide, is able to reduce hexavalent uranium, U(VI), to its tetravalent form, U(IV), in aqueous media in vitro, inducing the formation of nanocrystalline mixed-valence uranium oxide particles. After the initial reduction to U(V) and subsequent dismutation, the yielded U(IV) rapidly hydrolyses under near-neutral conditions forming 2-5 nm sized nanoparticles. The latter further aggregate to 20-40 nm chain-like building blocks that finally arrange as network-like structures.}, language = {en} } @article{HoangHaubitzKumke2018, author = {Hoang, Hoa T. and Haubitz, Toni and Kumke, Michael Uwe}, title = {Photophysics of "Floppy" Dyadsas Potential Biomembrane Probes}, series = {Journal of fluorescence}, volume = {28}, journal = {Journal of fluorescence}, number = {5}, publisher = {Springer}, address = {New York}, issn = {1053-0509}, doi = {10.1007/s10895-018-2286-4}, pages = {1225 -- 1237}, year = {2018}, abstract = {In the study a dyad (C6 probe), constructed of two dyes with highly different hydrophobicities, was investigated by steady-state and time-resolved spectroscopic techniques in chloroform, methanol, and in phospholipid vesicles, respectively. The dyad was built on two dyes: the lipophilic benzo[a]pyrene (BaP) and the hydrophilic sulforhodamine B (SRB). The dyes were linked via a short, but flexible alkyl chain (six C-atoms). Based on their spectroscopic properties, BaP and SRB showed a very efficient non-radiative resonance energy transfer in solution. Incorporation into a lipid bilayer limited the relative flexibility (degree of freedom) between donor and acceptor and was used for the investigation of fundamental photophysical aspects (especially of FRET) as well as to elucidate the potential of the dyad to probe the interface of vesicles (or cells). The location of the two dyes in vesicles and their respective accessibility for interactions with dye-specific antibodies was investigated. Based on the alteration of the anisotropy, on the rotational correlation time as well as on the diffusion coefficient the incorporation of the C6 probe into the vesicles was evaluated. Especially the limitation in the relative movements of the two dyes was considered and used to differentiate between potential parameters, that influence the energy transfer in the dyad. Transient absorption spectroscopy (TAS) and pulsed-interleave single molecule fluorescence experiments were performed to better understand the intramolecular interactions in the dyad. Finally, in a showcase for a biosensing application of the dyads, the binding of an SRB-specific antibody was investigated when the dyad was incorporated in vesicles.}, language = {en} } @article{HaubitzTsushimaSteudtneretal.2018, author = {Haubitz, Toni and Tsushima, Satoru and Steudtner, Robin and Drobot, Bj{\"o}rn and Geipel, Gerhard and Stumpf, Thorsten and Kumke, Michael Uwe}, title = {Ultrafast Transient Absorption Spectroscopy of UO(2)(2+)and [UO2Cl](+)}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {122}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.8b05567}, pages = {6970 -- 6977}, year = {2018}, abstract = {For the only water coordinated "free" uranyl (VI) aquo ion in perchlorate solution we identified and assigned several different excited states and showed that the (3)Delta state is the luminescent triplet state from transient absorption spectroscopy. With additional data from other spectroscopic methods (TRLFS, UV/vis) we generated a detailed Jablonski diagram and determined rate constants for several state transitions, like the inner conversion rate constant from the (3)Phi state to the (3)Delta state transition to be 0.35 ps(-1). In contrast to luminescence measurements, it was possible to observe the highly quenched uranyl(VI) ion in highly concentrated chloride solution by TAS and we were able to propose a dynamic quenching mechanism, where chloride complexation is followed by the charge transfer from the excited state uranyl(VI) to chloride. This proposed quenching route is supported by TD-DFT calculations.}, language = {en} } @article{BurekKrauseSchwotzeretal.2018, author = {Burek, Katja and Krause, Felix and Schwotzer, Matthias and Nefedov, Alexei and S{\"u}ssmuth, Julia and Haubitz, Toni and Kumke, Michael Uwe and Thissen, Peter}, title = {Hydrophobic Properties of Calcium-Silicate Hydrates Doped with Rare-Earth Elements}, series = {ACS sustainable chemistry \& engineering}, volume = {6}, journal = {ACS sustainable chemistry \& engineering}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2168-0485}, doi = {10.1021/acssuschemeng.8b03244}, pages = {14669 -- 14678}, year = {2018}, abstract = {In this study, the apparent relationship between the transport process and the surface chemistry of the Calcium-Silicate Hydrate (CSH) phases was investigated. For this purpose, a method was developed to synthesize ultrathin CSH phases to be used as a model substrate with the specific modification of their structure by introducing europium (Eu(III)). The structural and chemical changes during this Eu(III)-doping were observed by means of infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), and time-resolved laser fluorescence spectroscopy (TRLFS). These alterations of the CSH phases led to significant changes in the surface chemistry and consequently to considerable variations in the interaction with water, as evidenced by measurements of the contact angles on the modified model substrates. Our results provide the basis for a more profound molecular understanding of reactive transport processes in cement-based systems. Furthermore, these results broaden the perspective of improving the stability of cement-based materials, which are subjected to the impact of aggressive aqueous environments through targeted modifications of the CSH phases.}, language = {en} }