@article{SchefflerOberhaensliPourteauetal.2016, author = {Scheffler, Franziska and Oberh{\"a}nsli, Roland and Pourteau, Amaury and Immenhauser, A. and Candan, O.}, title = {Sedimentologic to metamorphic processes recorded in the high-pressure/low-temperature Mesozoic Rosetta Marble of Anatolia}, series = {International journal of earth sciences}, volume = {105}, journal = {International journal of earth sciences}, publisher = {Springer}, address = {New York}, issn = {1437-3254}, doi = {10.1007/s00531-015-1214-y}, pages = {225 -- 246}, year = {2016}, abstract = {Anatolia's high-pressure metamorphic belts are characterized in part by a Neotethyan stratigraphic succession that includes a mid-Cretaceous hemi-pelagic marble sequence. This unit contains, towards its stratigraphic top, dm-to-m-long radiating calcitic rods forming rosette-like textures. Here, we refer to these features as "Rosetta Marble". The remarkable textural similarity of non-metamorphic selenite crystals and radiating calcite rods in the Rosetta Marble strongly suggests that these textures represent pseudomorphs after selenites. Metamorphosed hemi-pelagic limestones, dominated by Rosetta selenite pseudomorphs, are alternating with siliceous meta-sediments containing relictic radiolaria tests. This stratigraphic pattern is indicative of transient phases characterized by evaporites precipitated from basinal brines alternating with non-evaporative hemi-pelagic deposition from normal-marine seawater. The regional distribution of Rosetta Marble exposures over 600 km is indicative of basin-scale evaporitic intervals. High-pressure, low-temperature metamorphism of these rocks is witnessed by Sr-rich (up to 3500 ppm), fibrous calcite pseudomorphs after aragonite and isolated aragonite inclusions in quartz. Peak metamorphic conditions of 1.2 GPa and 300-350 °C are attested by high-Si white mica thermobarometry. The Rosetta Marble case example examines the potential to unravel the complete history from deposition to diagenesis and metamorphism of meta-sedimentary rocks.}, language = {en} } @article{CandanKoralayTopuzetal.2016, author = {Candan, O. and Koralay, O. E. and Topuz, G. and Oberh{\"a}nsli, Roland and Fritz, H. and Collins, A. S. and Chen, F.}, title = {Late Neoproterozoic gabbro emplacement followed by early Cambrian eclogite-facies metamorphism in the Menderes Massif (W. Turkey): Implications on the final assembly of Gondwana}, series = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, volume = {34}, journal = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1342-937X}, doi = {10.1016/j.gr.2015.02.015}, pages = {158 -- 173}, year = {2016}, abstract = {Numerous (meta-)gabbroic dikes or stocks occur within the latest Neoproterozoic-early Cambrian series of the Menderes Massif (Anatolide-Tauride Block, western Turkey). These well-preserved rocks were locally converted into eclogitic metagabbros and garnet amphibolites along the contacts or shear zones. Both bulk-rock composition and compositions of igneous clinopyroxenes suggest continental tholeiitic affinity. U-Pb dating of igneous zircons from gabbroic rocks yielded a mean age of 563 +/- 1 Ma (2 sigma), indicating emplacement during the latest Neoproterozoic (Ediacaran). On the other hand, rims of zircons from eclogitic metagabbro gave 535 +/- 3 Ma (2 sigma) (early Cambrian), in addition to 558 +/- 3 Ma (2 sigma) obtained from the igneous core of zircons. These ages are interpreted as the time of high-P metamorphism and crystallization age of gabbroic protolith, respectively. Given the estimated paleogeographic position of the Anatolide-Tauride Block during the late Neoproterozoic and early Cambrian, this orogenic event can be spatially and temporally related to the northward continuity of 600-500 Ma orogenic event (Malagasy/Kuunga orogeny) extending from western margin of India, Madagascar, via Arabia up to northern margin of Gondwana beneath thick Phanerozoic cover series in Arabian Peninsula. Therefore, the high-P evolution of the basement of the Menderes Massif and associated basic intrusions can be interpreted to mark the latest stages of consumption of the basin/oceanic branches and final amalgamation of the Gondwana during the late Neoproterozoic-early Cambrian around the Arabian region. (C) 2015 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{CandanAkalKoralayetal.2016, author = {Candan, O. and Akal, C. and Koralay, O. E. and Okay, A. I. and Oberh{\"a}nsli, Roland and Prelevic, D. and Mertz-Kraus, R.}, title = {Carboniferous granites on the northern margin of Gondwana, Anatolide-Tauride Block, Turkey - Evidence for southward subduction of Paleotethys}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {683}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2016.06.030}, pages = {349 -- 366}, year = {2016}, abstract = {Carboniferous metagranites with U-Pb zircon crystallization ages of 331-315 Ma crop out in the Afyon zone in the northern margin of the Anatolide-Tauride Block, which is commonly regarded as part of Gondwana during the Late Palaeozoic. They are peraluminous, calc-alkaline and are characterized by increase in Rb and Ba, decrease in Nb-Ta, and enrichment in Sr and high LILE/HFSE ratios compatible with a continental arc setting. The metagranites intrude a metasedimentary sequence of phyllite, metaquartzite and marble; both the Carboniferous metagranites and metasedimentary rocks are overlain unconformably by Lower Triassic metaconglomerates, metavolcanics and Upper Triassic to Cretaceous recrystallized limestones. The low-grade metamorphism and deformation occurred at the Cretaceous-Tertiary boundary. There is no evidence for Carboniferous deformation and metamorphism in the region. Carboniferous arc-type granites and previously described Carboniferous subduction-accretion complexes on the northern margin of the Anatolide-Tauride Block suggest southward subduction of Paleotethys under Gondwana during the Carboniferous. Considering the Variscan-related arc granites in Pelagonian and Sakarya zones on the active southern margin of Laurasia, a dual subduction of Paleotethys can be envisaged between Early Carboniferous and Late Permian. However, the southward subduction was short-lived and by the Late Permian the Gondwana margin became passive. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} }