@phdthesis{Natkhin2010, author = {Natkhin, Marco}, title = {Modellgest{\"u}tzte Analyse der Einfl{\"u}sse von Ver{\"a}nderungen der Waldwirtschaft und des Klimas auf den Wasserhaushalt grundwasserabh{\"a}ngiger Landschaftselemente}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50627}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {In den letzten drei Jahrzehnten wurden in einigen Seen und Feuchtgebieten in bewaldeten Einzugsgebieten Nordost-Brandenburgs sinkende Wasserst{\"a}nde beobachtet. In diesen Gebieten bestimmt die Grundwasserneubildung im Einzugsgebiet maßgeblich das Wasserdargebot der Seen und Feuchtgebiete, die deshalb hier als grundwasserabh{\"a}ngige Landschaftselemente bezeichnet werden. Somit weisen die sinkenden Wasserst{\"a}nde auf einen R{\"u}ckgang der wegen des geringen Niederschlagsdargebotes ohnehin schon geringen Grundwasserneubildung hin. Die H{\"o}he der Grundwasserneubildung ist neben den hydroklimatischen Randbedingungen auch von der Landnutzung abh{\"a}ngig. Ver{\"a}nderungen in der Waldvegetation und der hydroklimatischen Randbedingungen bewirken {\"A}nderungen der Grundwasserneubildung und beeinflussen somit auch den Wasserhaushalt der Seen und Feuchtgebiete. Aktuell wird die Waldvegetation durch Kiefernmonokulturen dominiert, mit im Vergleich zu anderen Baumarten h{\"o}herer Evapotranspiration. Entwicklungen in der Forstwirtschaft streben die Verringerung von Kiefernmonokulturen an. Diese sollen langfristig auf geeigneten Standorten durch Laubmischw{\"a}lder ersetzt werden. Dadurch lassen sich eine geringere Evapotranspiration und damit eine h{\"o}here Grundwasserneubildung erreichen. In der vorliegenden Arbeit werden am Beispiel des Redernswalder Sees und des Briesensees die Ursachen der beobachteten sinkenden Wasserst{\"a}nde analysiert. Ihre Wasserst{\"a}nde nahmen in den letzten 25 Jahren um mehr als 3 Meter ab. Weiterhin wird untersucht, wie die erwarteten Klima{\"a}nderungen und Ver{\"a}nderungen in der Waldbewirtschaftung die zuk{\"u}nftige Grundwasserneubildung und den Wasserhaushalt von Seen beeinflussen k{\"o}nnen. Die Entwicklung der Grundwasserneubildung im Untersuchungsgebiet wurde mit dem Wasserhaushaltsmodell WaSiM-ETH simuliert. Die Analyse der Wechselwirkungen der Seen mit dem regionalen quart{\"a}ren Grundwasserleitersystem erfolgte mit dem 3D-Grundwassermodell FEFLOW. M{\"o}gliche zuk{\"u}nftige Ver{\"a}nderungen der Grundwasserneubildung und der Seewasserst{\"a}nde durch Klima{\"a}nderungen und Waldumbau wurden mit Szenarienrechnungen bis zum Jahr 2100 analysiert. Die modellgest{\"u}tzte Analyse zeigte, dass die beobachteten abnehmenden Wasserst{\"a}nde zu etwa gleichen Anteilen durch Ver{\"a}nderungen der hydroklimatischen Randbedingungen sowie durch Ver{\"a}nderungen in der Waldvegetation und damit abnehmenden Grundwasserneubildungsraten zu erkl{\"a}ren sind. Die zuk{\"u}nftigen Entwicklungen der Grundwasserneubildung und der Wasserst{\"a}nde sind gepr{\"a}gt von sich {\"a}ndernden hydroklimatischen Randbedingungen und einem sukzessiven Wandel der Kiefernbest{\"a}nde zu Laubw{\"a}ldern. Der Waldumbau hat positive Wirkungen auf die Grundwasserneubildung und damit auf die Wasserst{\"a}nde. Damit k{\"o}nnen die Einfl{\"u}sse des eingesetzten REMO-A1B-Klimaszenarios zum Ende des Modellzeitraumes durch den Waldumbau nicht kompensiert werden, das Sinken des Wasserstandes wird jedoch wesentlich reduziert. Bei dem moderateren REMO-B1-Klimaszenario werden die Wasserst{\"a}nde des Jahres 2008 durch den Waldumbau bis zum Jahr 2100 {\"u}berschritten.}, language = {de} } @phdthesis{Niederleithinger2010, author = {Niederleithinger, Ernst}, title = {Optimierung und Erweiterung der Parallel-Seismik-Methode zur Bestimmung der L{\"a}nge von Fundamentpf{\"a}hlen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49191}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Das Parallel-Seismik-Verfahren dient vor allem der nachtr{\"a}glichen L{\"a}ngenmessung von Fundamentpf{\"a}hlen oder {\"a}hnlichen Elementen zur Gr{\"u}ndung von Bauwerken. Eine solche Messung wird beispielsweise notwendig, wenn ein Geb{\"a}ude verst{\"a}rkt, erh{\"o}ht oder anders als bisher genutzt werden soll, aber keine Unterlagen mehr {\"u}ber die Fundamente vorhanden sind. Das Messprinzip des schon seit einigen Jahrzehnten bekannten Verfahrens ist relativ einfach: Auf dem Pfahlkopf wird meist durch Hammerschlag eine Stoßwelle erzeugt, die durch den Pfahl nach unten l{\"a}uft. Dabei wird Energie in den Boden abgegeben. Die abgestrahlten Wellen werden von Sensoren in einem parallel zum Pfahl hergestellten Bohrloch registriert. Aus den Laufzeiten lassen sich die materialspezifischen Wellengeschwindigkeiten im Pfahl und im Boden sowie die Pfahll{\"a}nge ermitteln. Bisher wurde meist ein sehr einfaches Verfahren zur Datenauswertung verwendet, das die L{\"a}nge der Pf{\"a}hle systematisch {\"u}bersch{\"a}tzt. In der vorliegenden Dissertation wurden die mathematisch-physikalischen Grundlagen beleuchtet und durch Computersimulation die Wellenausbreitung in Pfahl und Boden genau untersucht. Weitere Simulationen kl{\"a}rten den Einfluss verschiedener Mess- und Strukturparameter, beispielsweise den Einfluss von Bodenschichtung oder Fehlstellen im Pfahl. So konnte gekl{\"a}rt werden, in welchen F{\"a}llen mit dem Parallel-Seismik-Verfahren gute Ergebnisse erzielt werden k{\"o}nnen (z. B. bei Fundamenten in Sand oder Ton) und wo es an seine Grenzen st{\"o}ßt (z. B. bei Gr{\"u}ndung im Fels). Auf Basis dieser Ergebnisse entstand ein neuer mathematischer Formalismus zur Auswertung der Laufzeiten. In Verbindung mit einem Verfahren zur Dateninversion, d. h. der automatischen Anpassung der Unbekannten in den Gleichungen an die Messergebnisse, lassen sich sehr viel genauere Werte f{\"u}r die Pfahll{\"a}nge ermitteln als mit allen bisher publizierten Verfahren. Zudem kann man nun auch mit relativ großen Abst{\"a}nden zwischen Bohrloch und Pfahl (2 - 3 m) arbeiten. Die Methode wurde an simulierten Daten ausf{\"u}hrlich getestet. Die Messmethode und das neue Auswerteverfahren wurden in einer Reihe praktischer Anwendungen getestet - und dies fast immer erfolgreich. Nur in einem Fall komplizierter Fundamentgeometrie bei gleichzeitig sehr hoher Anforderung an die Genauigkeit war schon nach Simulationen klar, dass hier ein Einsatz nicht sinnvoll ist. Daf{\"u}r zeigte es sich, dass auch die L{\"a}nge von Pfahlw{\"a}nden und Spundw{\"a}nden ermittelt werden kann. Die Parallel-Seismik-Methode funktioniert als einziges verf{\"u}gbares Verfahren zur Fundamentl{\"a}ngenermittlung zugleich in den meisten Bodenarten sowie an metallischen und nichtmetallischen Fundamenten und kommt ohne Kalibrierung aus. Sie ist nun sehr viel breiter einsetzbar und liefert sehr viel genauere Ergebnisse. Die Simulationen zeigten noch Potential f{\"u}r Erweiterungen, zum Beispiel durch den Einsatz spezieller Sensoren, die zus{\"a}tzliche Wellentypen empfangen und unterscheiden k{\"o}nnen.}, language = {de} }