@article{GhoddousiVanCayzeeleNegahdaretal.2022, author = {Ghoddousi, Arash and Van Cayzeele, Corinna and Negahdar, Pegah and Soofi, Mahmood and Kh. Hamidi, Amirhossein and Bleyhl, Benjamin and Fandos, Guillermo and Khorozyan, Igor and Waltert, Matthias and Kuemmerle, Tobias}, title = {Understanding spatial patterns of poaching pressure using ranger logbook data to optimize future patrolling strategies}, series = {Ecological applications : a publication of the Ecological Society of America}, volume = {32}, journal = {Ecological applications : a publication of the Ecological Society of America}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1051-0761}, doi = {10.1002/eap.2601}, pages = {13}, year = {2022}, abstract = {Poaching is driving many species toward extinction, and as a result, lowering poaching pressure is a conservation priority. This requires understanding where poaching pressure is high and which factors determine these spatial patterns. However, the cryptic and illegal nature of poaching makes this difficult. Ranger patrol data, typically recorded in protected area logbooks, contain information on patrolling efforts and poaching detection and should thus provide opportunities for a better understanding of poaching pressure. However, these data are seldom analyzed and rarely used to inform adaptive management strategies. We developed a novel approach to making use of analog logbook records to map poaching pressure and to test environmental criminology and predator-prey relationship hypotheses explaining poaching patterns. We showcase this approach for Golestan National Park in Iran, where poaching has substantially depleted ungulate populations. We digitized data from >4800 ranger patrols from 2014 to 2016 and used an occupancy modeling framework to relate poaching to (1) accessibility, (2) law enforcement, and (3) prey availability factors. Based on predicted poaching pressure and patrolling intensity, we provide suggestions for future patrol allocation strategies. Our results revealed a low probability (12\%) of poacher detection during patrols. Poaching distribution was best explained by prey availability, indicating that poachers target areas with high concentrations of ungulates. Poaching pressure was estimated to be high (>0.49) in 39\% of our study area. To alleviate poaching pressure, we recommend ramping up patrolling intensity in 12\% of the national park, which could be achievable by reducing excess patrols in about 20\% of the park. However, our results suggest that for 27\% of the park, it is necessary to improve patrolling quality to increase detection probability of poaching, for example, by closing temporal patrolling gaps or expanding informant networks. Our approach illustrates that analog ranger logbooks are an untapped resource for evidence-based and adaptive planning of protected area management. Using this wealth of data can open up new avenues to better understand poaching and its determinants, to expand effectiveness assessments to the past, and, more generally, to allow for strategic conservation planning in protected areas.}, language = {en} } @article{ZoccaratoSherMikietal.2022, author = {Zoccarato, Luca and Sher, Daniel and Miki, Takeshi and Segre, Daniel and Grossart, Hans-Peter}, title = {A comparative whole-genome approach identifies bacterial traits for marine microbial interactions}, series = {Communications biology}, volume = {5}, journal = {Communications biology}, number = {1}, publisher = {Springer Nature}, address = {Berlin}, issn = {2399-3642}, doi = {10.1038/s42003-022-03184-4}, pages = {13}, year = {2022}, abstract = {Luca Zoccarato, Daniel Sher et al. leverage publicly available bacterial genomes from marine and other environments to examine traits underlying microbial interactions. Their results provide a valuable resource to investigate clusters of functional and linked traits to better understand marine bacteria community assembly and dynamics. Microbial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities. We identified genome functional clusters (GFCs) which group bacterial taxa with common ecology and life history. Most GFCs revealed unique combinations of interaction traits, including the production of siderophores (10\% of genomes), phytohormones (3-8\%) and different B vitamins (57-70\%). Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction traits than expected by chance, and are thus predicted to preferentially interact synergistically and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs) identify traits that may have evolved to act together (e.g., secretion systems, nitrogen metabolism regulation and B vitamin transporters), providing testable hypotheses for complex mechanisms of microbial interactions. Our approach translates multidimensional genomic information into an atlas of marine bacteria and their putative functions, relevant for understanding the fundamental rules that govern community assembly and dynamics.}, language = {en} } @article{OmranianAngeleskaNikoloski2021, author = {Omranian, Sara and Angeleska, Angela and Nikoloski, Zoran}, title = {PC2P}, series = {Bioinformatics}, volume = {37}, journal = {Bioinformatics}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btaa1089}, pages = {73 -- 81}, year = {2021}, abstract = {Motivation: Prediction of protein complexes from protein-protein interaction (PPI) networks is an important problem in systems biology, as they control different cellular functions. The existing solutions employ algorithms for network community detection that identify dense subgraphs in PPI networks. However, gold standards in yeast and human indicate that protein complexes can also induce sparse subgraphs, introducing further challenges in protein complex prediction. Results: To address this issue, we formalize protein complexes as biclique spanned subgraphs, which include both sparse and dense subgraphs. We then cast the problem of protein complex prediction as a network partitioning into biclique spanned subgraphs with removal of minimum number of edges, called coherent partition. Since finding a coherent partition is a computationally intractable problem, we devise a parameter-free greedy approximation algorithm, termed Protein Complexes from Coherent Partition (PC2P), based on key properties of biclique spanned subgraphs. Through comparison with nine contenders, we demonstrate that PC2P: (i) successfully identifies modular structure in networks, as a prerequisite for protein complex prediction, (ii) outperforms the existing solutions with respect to a composite score of five performance measures on 75\% and 100\% of the analyzed PPI networks and gold standards in yeast and human, respectively, and (iii,iv) does not compromise GO semantic similarity and enrichment score of the predicted protein complexes. Therefore, our study demonstrates that clustering of networks in terms of biclique spanned subgraphs is a promising framework for detection of complexes in PPI networks.}, language = {en} } @article{NwosuRoeserYangetal.2021, author = {Nwosu, Ebuka Canisius and Roeser, Patricia Angelika and Yang, Sizhong and Ganzert, Lars and Dellwig, Olaf and Pinkerneil, Sylvia and Brauer, Achim and Dittmann, Elke and Wagner, Dirk and Liebner, Susanne}, title = {From water into sediment-tracing freshwater cyanobacteria via DNA analyses}, series = {Microorganisms : open access journal}, volume = {9}, journal = {Microorganisms : open access journal}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2076-2607}, doi = {10.3390/microorganisms9081778}, pages = {20}, year = {2021}, abstract = {Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May-October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations.}, language = {en} } @article{StoofLeichsenringHuangLiuetal.2022, author = {Stoof-Leichsenring, Kathleen R. and Huang, Sichao and Liu, Sisi and Jia, Weihan and Li, Kai and Liu, Xingqi and Pestryakova, Luidmila A. and Herzschuh, Ulrike}, title = {Sedimentary DNA identifies modern and past macrophyte diversity and its environmental drivers in high-latitude and high-elevation lakes in Siberia and China}, series = {Limnology and oceanography}, volume = {67}, journal = {Limnology and oceanography}, number = {5}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0024-3590}, doi = {10.1002/lno.12061}, pages = {1126 -- 1141}, year = {2022}, abstract = {Arctic and alpine aquatic ecosystems are changing rapidly under recent global warming, threatening water resources by diminishing trophic status and changing biotic composition. Macrophytes play a key role in the ecology of freshwaters and we need to improve our understanding of long-term macrophytes diversity and environmental change so far limited by the sporadic presence of macrofossils in sediments. In our study, we applied metabarcoding using the trnL P6 loop marker to retrieve macrophyte richness and composition from 179 surface-sediment samples from arctic Siberian and alpine Chinese lakes and three representative lake cores. The surface-sediment dataset suggests that macrophyte richness and composition are mostly affected by temperature and conductivity, with highest richness when mean July temperatures are higher than 12 degrees C and conductivity ranges between 40 and 400 mu S cm(-1). Compositional turnover during the Late Pleistocene/Holocene is minor in Siberian cores and characterized by a less rich, but stable emergent macrophyte community. Richness decreases during the Last Glacial Maximum and rises during wetter and warmer climate in the Late-glacial and Mid-Holocene. In contrast, we detect a pronounced change from emergent to submerged taxa at 14 ka in the Tibetan alpine core, which can be explained by increasing temperature and conductivity due to glacial runoff and evaporation. Our study provides evidence for the suitability of the trnL marker to recover modern and past macrophyte diversity and its applicability for the response of macrophyte diversity to lake-hydrochemical and climate variability predicting contrasting macrophyte changes in arctic and alpine lakes under intensified warming and human impact.}, language = {en} } @article{BizicIonescuKarnataketal.2022, author = {Bizic, Mina and Ionescu, Danny and Karnatak, Rajat and Musseau, Camille L. and Onandia, Gabriela and Berger, Stella A. and Nejstgaard, Jens C. and Lischeid, Gunnar and Gessner, Mark O. and Wollrab, Sabine and Grossart, Hans-Peter}, title = {Land-use type temporarily affects active pond community structure but not gene expression patterns}, series = {Molecular ecology}, volume = {31}, journal = {Molecular ecology}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.16348}, pages = {1716 -- 1734}, year = {2022}, abstract = {Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics to understand the responses of active bacterial, archaeal and eukaryotic communities to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel environmental DNA study that suggests the homogenization of biodiversity across KH, conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced for eukaryotes than for bacteria. In contrast, gene expression patterns did not differ between months or across land-use types, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results indicate that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This potential needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes.}, language = {en} } @article{HerzschuhLiBoehmeretal.2022, author = {Herzschuh, Ulrike and Li, Chenzhi and Boehmer, Thomas and Postl, Alexander K. and Heim, Birgit and Andreev, Andrei A. and Cao, Xianyong and Wieczorek, Mareike and Ni, Jian}, title = {LegacyPollen 1.0}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-3213-2022}, pages = {3213 -- 3227}, year = {2022}, abstract = {Here we describe the LegacyPollen 1.0, a dataset of 2831 fossil pollen records with metadata, a harmonized taxonomy, and standardized chronologies. A total of 1032 records originate from North America, 1075 from Europe, 488 from Asia, 150 from Latin America, 54 from Africa, and 32 from the Indo-Pacific. The pollen data cover the late Quaternary (mostly the Holocene). The original 10 110 pollen taxa names (including variations in the notations) were harmonized to 1002 terrestrial taxa (including Cyperaceae), with woody taxa and major herbaceous taxa harmonized to genus level and other herbaceous taxa to family level. The dataset is valuable for synthesis studies of, for example, taxa areal changes, vegetation dynamics, human impacts (e.g., deforestation), and climate change at global or continental scales. The harmonized pollen and metadata as well as the harmonization table are available from PANGAEA (https://doi.org/10.1594/PANGAEA.929773; Herzschuh et al., 2021). R code for the harmonization is provided at Zenodo (https://doi.org/10.5281/zenodo.5910972; Herzschuh et al., 2022) so that datasets at a customized harmonization level can be easily established.}, language = {en} } @article{StuenziKruseBoikeetal.2022, author = {Stuenzi, Simone Maria and Kruse, Stefan and Boike, Julia and Herzschuh, Ulrike and Oehme, Alexander and Pestryakova, Luidmila A. and Westermann, Sebastian and Langer, Moritz}, title = {Thermohydrological impact of forest disturbances on ecosystem-protected permafrost}, series = {Journal of geophysical research : Biogeosciences}, volume = {127}, journal = {Journal of geophysical research : Biogeosciences}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-8953}, doi = {10.1029/2021JG006630}, pages = {24}, year = {2022}, abstract = {Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44\%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period.}, language = {en} } @article{ReeveNicholsonAltafetal.2022, author = {Reeve, Holly A. and Nicholson, Jake and Altaf, Farieha and Lonsdale, Thomas H. and Preissler, Janina and Lauterbach, Lars and Lenz, Oliver and Leimk{\"u}hler, Silke and Hollmann, Frank and Paul, Caroline E. and Vincent, Kylie A.}, title = {A hydrogen-driven biocatalytic approach to recycling synthetic analogues of NAD(P)H}, series = {Chemical communications : ChemComm}, volume = {58}, journal = {Chemical communications : ChemComm}, number = {75}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/d2cc02411j}, pages = {10540 -- 10543}, year = {2022}, abstract = {We demonstrate a recycling system for synthetic nicotinamide cofactor analogues using a soluble hydrogenase with turnover number of >1000 for reduction of the cofactor analogues by H-2. Coupling this system to an ene reductase, we show quantitative conversion of N-ethylmaleimide to N-ethylsuccinimide. The biocatalyst system retained >50\% activity after 7 h.}, language = {en} } @article{KrebsRakotoarinoroStechetal.2022, author = {Krebs, Simon K. and Rakotoarinoro, Nathanael and Stech, Marlitt and Zemella, Anne and Kubick, Stefan}, title = {A CHO-based cell-free dual fluorescence reporter system for the straightforward assessment of amber suppression and scFv functionality}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.873906}, pages = {15}, year = {2022}, abstract = {Incorporation of noncanonical amino acids (ncAAs) with bioorthogonal reactive groups by amber suppression allows the generation of synthetic proteins with desired novel properties. Such modified molecules are in high demand for basic research and therapeutic applications such as cancer treatment and in vivo imaging. The positioning of the ncAA-responsive codon within the protein's coding sequence is critical in order to maintain protein function, achieve high yields of ncAA-containing protein, and allow effective conjugation. Cell-free ncAA incorporation is of particular interest due to the open nature of cell-free systems and their concurrent ease of manipulation. In this study, we report a straightforward workflow to inquire ncAA positions in regard to incorporation efficiency and protein functionality in a Chinese hamster ovary (CHO) cell-free system. As a model, the well-established orthogonal translation components Escherichia coli tyrosyl-tRNA synthetase (TyrRS) and tRNATyr(CUA) were used to site-specifically incorporate the ncAA p-azido-l-phenylalanine (AzF) in response to UAG codons. A total of seven ncAA sites within an anti-epidermal growth factor receptor (EGFR) single-chain variable fragment (scFv) N-terminally fused to the red fluorescent protein mRFP1 and C-terminally fused to the green fluorescent protein sfGFP were investigated for ncAA incorporation efficiency and impact on antigen binding. The characterized cell-free dual fluorescence reporter system allows screening for ncAA incorporation sites with high incorporation efficiency that maintain protein activity. It is parallelizable, scalable, and easy to operate. We propose that the established CHO-based cell-free dual fluorescence reporter system can be of particular interest for the development of antibody-drug conjugates (ADCs).}, language = {en} }