@phdthesis{Tamasi2016, author = {Tamasi, Katalin}, title = {Measuring children's sensitivity to phonological detail using eye tracking and pupillometry}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395954}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 165}, year = {2016}, abstract = {Infants' lexical processing is modulated by featural manipulations made to words, suggesting that early lexical representations are sufficiently specified to establish a match with the corresponding label. However, the precise degree of detail in early words requires further investigation due to equivocal findings. We studied this question by assessing children's sensitivity to the degree of featural manipulation (Chapters 2 and 3), and sensitivity to the featural makeup of homorganic and heterorganic consonant clusters (Chapter 4). Gradient sensitivity on the one hand and sensitivity to homorganicity on the other hand would suggest that lexical processing makes use of sub-phonemic information, which in turn would indicate that early words contain sub-phonemic detail. The studies presented in this thesis assess children's sensitivity to sub-phonemic detail using minimally demanding online paradigms suitable for infants: single-picture pupillometry and intermodal preferential looking. Such paradigms have the potential to uncover lexical knowledge that may be masked otherwise due to cognitive limitations. The study reported in Chapter 2 obtained a differential response in pupil dilation to the degree of featural manipulation, a result consistent with gradient sensitivity. The study reported in Chapter 3 obtained a differential response in proportion of looking time and pupil dilation to the degree of featural manipulation, a result again consistent with gradient sensitivity. The study reported in Chapter 4 obtained a differential response to the manipulation of homorganic and heterorganic consonant clusters, a result consistent with sensitivity to homorganicity. These results suggest that infants' lexical representations are not only specific, but also detailed to the extent that they contain sub-phonemic information.}, language = {en} } @misc{HoehleFritzscheMessetal.2020, author = {H{\"o}hle, Barbara and Fritzsche, Tom and Meß, Katharina and Philipp, Mareike and Gafos, Adamantios I.}, title = {Only the right noise?}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {5}, issn = {1866-8364}, doi = {10.25932/publishup-51667}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516674}, pages = {18}, year = {2020}, abstract = {Seminal work by Werker and colleagues (Stager \& Werker [1997]Nature, 388, 381-382) has found that 14-month-old infants do not show evidence for learning minimal pairs in the habituation-switch paradigm. However, when multiple speakers produce the minimal pair in acoustically variable ways, infants' performance improves in comparison to a single speaker condition (Rost \& McMurray [2009]Developmental Science, 12, 339-349). The current study further extends these results and assesses how different kinds of input variability affect 14-month-olds' minimal pair learning in the habituation-switch paradigm testing German learning infants. The first two experiments investigated word learning when the labels were spoken by a single speaker versus when the labels were spoken by multiple speakers. In the third experiment we studied whether non-acoustic variability, implemented by visual variability of the objects presented together with the labels, would also affect minimal pair learning. We found enhanced learning in the multiple speakers compared to the single speaker condition, confirming previous findings with English-learning infants. In contrast, visual variability of the presented objects did not support learning. These findings both confirm and better delimit the beneficial role of speech-specific variability in minimal pair learning. Finally, we review different proposals on the mechanisms via which variability confers benefits to learning and outline what may be likely principles that underlie this benefit. We highlight among these the multiplicity of acoustic cues signalling phonemic contrasts and the presence of relations among these cues. It is in these relations where we trace part of the source for the apparent paradoxical benefit of variability in learning.}, language = {en} }