@article{MeyerEbelingEisenhaueretal.2016, author = {Meyer, Sebastian T. and Ebeling, Anne and Eisenhauer, Nico and Hertzog, Lionel and Hillebrand, Helmut and Milcu, Alexandru and Pompe, Sven and Abbas, Maike and Bessler, Holger and Buchmann, Nina and De Luca, Enrica and Engels, Christof and Fischer, Markus and Gleixner, Gerd and Hudewenz, Anika and Klein, Alexandra-Maria and de Kroon, Hans and Leimer, Sophia and Loranger, Hannah and Mommer, Liesje and Oelmann, Yvonne and Ravenek, Janneke M. and Roscher, Christiane and Rottstock, Tanja and Scherber, Christoph and Scherer-Lorenzen, Michael and Scheu, Stefan and Schmid, Bernhard and Schulze, Ernst-Detlef and Staudler, Andrea and Strecker, Tanja and Temperton, Vicky and Tscharntke, Teja and Vogel, Anja and Voigt, Winfried and Weigelt, Alexandra and Wilcke, Wolfgang and Weisser, Wolfgang W.}, title = {Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {7}, journal = {Ecosphere : the magazine of the International Ecology University}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2150-8925}, doi = {10.1002/ecs2.1619}, pages = {14}, year = {2016}, language = {en} } @phdthesis{Leins2023, author = {Leins, Johannes A.}, title = {Combining model detail with large scales}, doi = {10.25932/publishup-58283}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582837}, school = {Universit{\"a}t Potsdam}, pages = {xv, 168}, year = {2023}, abstract = {The global climate crisis is significantly contributing to changing ecosystems, loss of biodiversity and is putting numerous species on the verge of extinction. In principle, many species are able to adapt to changing conditions or shift their habitats to more suitable regions. However, change is progressing faster than some species can adjust, or potential adaptation is blocked and disrupted by direct and indirect human action. Unsustainable anthropogenic land use in particular is one of the driving factors, besides global heating, for these ecologically critical developments. Precisely because land use is anthropogenic, it is also a factor that could be quickly and immediately corrected by human action. In this thesis, I therefore assess the impact of three climate change scenarios of increasing intensity in combination with differently scheduled mowing regimes on the long-term development and dispersal success of insects in Northwest German grasslands. The large marsh grasshopper (LMG, Stethophyma grossum, Linn{\´e} 1758) is used as a species of reference for the analyses. It inhabits wet meadows and marshes and has a limited, yet fairly good ability to disperse. Mowing and climate conditions affect the development and mortality of the LMG differently depending on its life stage. The specifically developed simulation model HiLEG (High-resolution Large Environmental Gradient) serves as a tool for investigating and projecting viability and dispersal success under different climate conditions and land use scenarios. It is a spatially explicit, stage- and cohort-based model that can be individually configured to represent the life cycle and characteristics of terrestrial insect species, as well as high-resolution environmental data and the occurrence of external disturbances. HiLEG is a freely available and adjustable software that can be used to support conservation planning in cultivated grasslands. In the three case studies of this thesis, I explore various aspects related to the structure of simulation models per se, their importance in conservation planning in general, and insights regarding the LMG in particular. It became apparent that the detailed resolution of model processes and components is crucial to project the long-term effect of spatially and temporally confined events. Taking into account conservation measures at the regional level has further proven relevant, especially in light of the climate crisis. I found that the LMG is benefiting from global warming in principle, but continues to be constrained by harmful mowing regimes. Land use measures could, however, be adapted in such a way that they allow the expansion and establishment of the LMG without overly affecting agricultural yields. Overall, simulation models like HiLEG can make an important contribution and add value to conservation planning and policy-making. Properly used, simulation results shed light on aspects that might be overlooked by subjective judgment and the experience of individual stakeholders. Even though it is in the nature of models that they are subject to limitations and only represent fragments of reality, this should not keep stakeholders from using them, as long as these limitations are clearly communicated. Similar to HiLEG, models could further be designed in such a way that not only the parameterization can be adjusted as required, but also the implementation itself can be improved and changed as desired. This openness and flexibility should become more widespread in the development of simulation models.}, language = {en} } @phdthesis{Crawford2020, author = {Crawford, Michael Scott}, title = {Using individual-based modeling to understand grassland diversity and resilience in the Anthropocene}, doi = {10.25932/publishup-47941}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479414}, school = {Universit{\"a}t Potsdam}, pages = {174}, year = {2020}, abstract = {The world's grassland systems are increasingly threatened by anthropogenic change. Susceptible to a variety of different stressors, from land-use intensification to climate change, understanding the mechanisms driving the maintenance of these systems' biodiversity and stability, and how these mechanisms may shift under human-mediated disturbance, is thus critical for successfully navigating the next century. Within this dissertation, I use an individual-based and spatially-explicit model of grassland community assembly (IBC-grass) to examine several processes, thought key to understanding their biodiversity and stability and how it changes under stress. In the first chapter of my thesis, I examine the conditions under which intraspecific trait variation influences the diversity of simulated grassland communities. In the second and third chapters of my thesis, I shift focus towards understanding how belowground herbivores influence the stability of these grassland systems to either a disturbance that results in increased, stochastic, plant mortality, or eutrophication. Intraspecific trait variation (ITV), or variation in trait values between individuals of the same species, is fundamental to the structure of ecological communities. However, because it has historically been difficult to incorporate into theoretical and statistical models, it has remained largely overlooked in community-level analyses. This reality is quickly shifting, however, as a consensus of research suggests that it may compose a sizeable proportion of the total variation within an ecological community and that it may play a critical role in determining if species coexist. Despite this increasing awareness that ITV matters, there is little consensus of the magnitude and direction of its influence. Therefore, to better understand how ITV changes the assembly of grassland communities, in the first chapter of my thesis, I incorporate it into an established, individual-based grassland community model, simulating both pairwise invasion experiments as well as the assembly of communities with varying initial diversities. By varying the amount of ITV in these species' functional traits, I examine the magnitude and direction of ITV's influence on pairwise invasibility and community coexistence. During pairwise invasion, ITV enables the weakest species to more frequently invade the competitively superior species, however, this influence does not generally scale to the community level. Indeed, unless the community has low alpha- and beta- diversity, there will be little effect of ITV in bolstering diversity. In these situations, since the trait axis is sparsely filled, the competitively inferior may suffer less competition and therefore ITV may buffer the persistence and abundance of these species for some time. In the second and third chapters of my thesis, I model how one of the most ubiquitous trophic interactions within grasslands, herbivory belowground, influences their diversity and stability. Until recently, the fundamental difficulty in studying a process within the soil has left belowground herbivory "out of sight, out of mind." This dilemma presents an opportunity for simulation models to explore how this understudied process may alter community dynamics. In the second chapter of my thesis, I implement belowground herbivory - represented by the weekly removal of plant biomass - into IBC-grass. Then, by introducing a pulse disturbance, modelled as the stochastic mortality of some percentage of the plant community, I observe how the presence of belowground herbivores influences the resistance and recovery of Shannon diversity in these communities. I find that high resource, low diversity, communities are significantly more destabilized by the presence of belowground herbivores after disturbance. Depending on the timing of the disturbance and whether the grassland's seed bank persists for more than one season, the impact of the disturbance - and subsequently the influence of the herbivores - can be greatly reduced. However, because human-mediated eutrophication increases the amount of resources in the soil, thus pressuring grassland systems, our results suggest that the influence of these herbivores may become more important over time. In the third chapter of my thesis, I delve further into understanding the mechanistic underpinnings of belowground herbivores on the diversity of grasslands by replicating an empirical mesocosm experiment that crosses the presence of herbivores above- and below-ground with eutrophication. I show that while aboveground herbivory, as predicted by theory and frequently observed in experiments, mitigates the impact of eutrophication on species diversity, belowground herbivores counterintuitively reduce biodiversity. Indeed, this influence positively interacts with the eutrophication process, amplifying its negative impact on diversity. I discovered the mechanism underlying this surprising pattern to be that, as the herbivores consume roots, they increase the proportion of root resources to root biomass. Because root competition is often symmetric, herbivory fails to mitigate any asymmetries in the plants' competitive dynamics. However, since the remaining roots have more abundant access to resources, the plants' competition shifts aboveground, towards asymmetric competition for light. This leads the community towards a low-diversity state, composed of mostly high-performance, large plant species. We further argue that this pattern will emerge unless the plants' root competition is asymmetric, in which case, like its counterpart aboveground, belowground herbivory may buffer diversity by reducing this asymmetry between the competitively superior and inferior plants. I conclude my dissertation by discussing the implications of my research on the state of the art in intraspecific trait variation and belowground herbivory, with emphasis on the necessity of more diverse theory development in the study of these fundamental interactions. My results suggest that the influence of these processes on the biodiversity and stability of grassland systems is underappreciated and multidimensional, and must be thoroughly explored if researchers wish to predict how the world's grasslands will respond to anthropogenic change. Further, should researchers myopically focus on understanding central ecological interactions through only mathematically tractable analyses, they may miss entire suites of potential coexistence mechanisms that can increase the coviability of species, potentially leading to coexistence over ecologically-significant timespans. Individual-based modelling, therefore, with its focus on individual interactions, will prove a critical tool in the coming decades for understanding how local interactions scale to larger contexts, and how these interactions shape ecological communities and further predicting how these systems will change under human-mediated stress.}, language = {en} }