@article{YuanShengPreicketal.2020, author = {Yuan, Junxia and Sheng, Guilian and Preick, Michaela and Sun, Boyang and Hou, Xindong and Chen, Shungang and Taron, Ulrike Helene and Barlow, Axel and Wang, Linying and Hu, Jiaming and Deng, Tao and Lai, Xulong and Hofreiter, Michael}, title = {Mitochondrial genomes of Late Pleistocene caballine horses from China belong to a separate clade}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {250}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2020.106691}, pages = {8}, year = {2020}, abstract = {There were several species of Equus in northern China during the Late Pleistocene, including Equus przewalskii and Equus dalianensis. A number of morphological studies have been carried out on E. przewalskii and E. dalianensis, but their evolutionary history is still unresolved. In this study, we retrieved near-complete mitochondrial genomes from E. dalianensis and E. przewalskii specimens excavated from Late Pleistocene strata in northeastern China. Phylogenetic analyses revealed that caballoid horses were divided into two subclades: the New World and the Old World caballine horse subclades. The Old World caballine horses comprise of two deep phylogenetic lineages, with modern and ancient Equus caballus and modern E. przewalskii forming lineage I, and the individuals in this study together with one Yakut specimen forming lineage II. Our results indicate that Chinese Late Pleistocene caballoid horses showed a closer relationship to other Eurasian caballine horses than that to Pleistocene horses from North America. In addition, phylogenetic analyses suggested a close relationship between E. dalianensis and the Chinese fossil E. przewalskii, in agreement with previous researches based on morphological analyses. Interestingly, E. dalianensis and the fossil E. przewalskii were intermixed rather than split into distinct lineages, suggesting either that gene flow existed between these two species or that morphology-based species assignment of palaeontological specimens is not always correct. Moreover, Bayesian analysis showed that the divergence time between the New World and the Old World caballoid horses was at 1.02 Ma (95\% CI: 0.86-1.24 Ma), and the two Old World lineages (I \& II) split at 0.88 Ma (95\% CI: 0.69-1.13 Ma), which indicates that caballoid horses seem to have evolved into different populations in the Old World soon after they migrated from North America via the Bering Land Bridge. Finally, the TMRCA of E. dalianensis was estimated at 0.20 Ma (95\% CI: 0.15-0.28 Ma), and it showed a relative low genetic diversity compared with other Equus species.}, language = {en} } @article{BarlowHartmannGonzalezetal.2020, author = {Barlow, Axel and Hartmann, Stefanie and Gonzalez, Javier and Hofreiter, Michael and Paijmans, Johanna L. A.}, title = {Consensify}, series = {Genes / Molecular Diversity Preservation International}, volume = {11}, journal = {Genes / Molecular Diversity Preservation International}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes11010050}, pages = {22}, year = {2020}, abstract = {A standard practise in palaeogenome analysis is the conversion of mapped short read data into pseudohaploid sequences, frequently by selecting a single high-quality nucleotide at random from the stack of mapped reads. This controls for biases due to differential sequencing coverage, but it does not control for differential rates and types of sequencing error, which are frequently large and variable in datasets obtained from ancient samples. These errors have the potential to distort phylogenetic and population clustering analyses, and to mislead tests of admixture using D statistics. We introduce Consensify, a method for generating pseudohaploid sequences, which controls for biases resulting from differential sequencing coverage while greatly reducing error rates. The error correction is derived directly from the data itself, without the requirement for additional genomic resources or simplifying assumptions such as contemporaneous sampling. For phylogenetic and population clustering analysis, we find that Consensify is less affected by artefacts than methods based on single read sampling. For D statistics, Consensify is more resistant to false positives and appears to be less affected by biases resulting from different laboratory protocols than other frequently used methods. Although Consensify is developed with palaeogenomic data in mind, it is applicable for any low to medium coverage short read datasets. We predict that Consensify will be a useful tool for future studies of palaeogenomes.}, language = {en} } @article{HofreiterHartmann2020, author = {Hofreiter, Michael and Hartmann, Stefanie}, title = {Reconstructing protein-coding sequences from ancient DNA}, series = {Odorant binding and chemosensory proteins}, volume = {642}, journal = {Odorant binding and chemosensory proteins}, publisher = {Academic Press, an imprint of Elsevier}, address = {Cambridge, MA.}, isbn = {978-0-12-821157-1}, issn = {0076-6879}, doi = {10.1016/bs.mie.2020.05.008}, pages = {21 -- 33}, year = {2020}, abstract = {Obtaining information about functional details of proteins of extinct species is of critical importance for a better understanding of the real-life appearance, behavior and ecology of these lost entries in the book of life. In this chapter, we discuss the possibilities to retrieve the necessary DNA sequence information from paleogenomic data obtained from fossil specimens, which can then be used to express and subsequently analyze the protein of interest. We discuss the problems specific to ancient DNA, including mis-coding lesions, short read length and incomplete paleogenome assemblies. Finally, we discuss an alternative, but currently rarely used approach, direct PCR amplification, which is especially useful for comparatively short proteins.}, language = {en} } @article{MohandesanSpellerPetersetal.2017, author = {Mohandesan, Elmira and Speller, Camilla F. and Peters, Joris and Uerpmann, Hans-Peter and Uerpmann, Margarethe and De Cupere, Bea and Hofreiter, Michael and Burger, Pamela A.}, title = {Combined hybridization capture and shotgun sequencing for ancient DNA analysis of extinct wild and domestic dromedary camel}, series = {Molecular ecology resources}, volume = {17}, journal = {Molecular ecology resources}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12551}, pages = {300 -- 313}, year = {2017}, abstract = {The performance of hybridization capture combined with next-generation sequencing (NGS) has seen limited investigation with samples from hot and arid regions until now. We applied hybridization capture and shotgun sequencing to recover DNA sequences from bone specimens of ancient-domestic dromedary (Camelus dromedarius) and its extinct ancestor, the wild dromedary from Jordan, Syria, Turkey and the Arabian Peninsula, respectively. Our results show that hybridization capture increased the percentage of mitochondrial DNA (mtDNA) recovery by an average 187-fold and in some cases yielded virtually complete mitochondrial (mt) genomes at multifold coverage in a single capture experiment. Furthermore, we tested the effect of hybridization temperature and time by using a touchdown approach on a limited number of samples. We observed no significant difference in the number of unique dromedary mtDNA reads retrieved with the standard capture compared to the touchdown method. In total, we obtained 14 partial mitochondrial genomes from ancient-domestic dromedaries with 17-95\% length coverage and 1.27-47.1-fold read depths for the covered regions. Using whole-genome shotgun sequencing, we successfully recovered endogenous dromedary nuclear DNA (nuDNA) from domestic and wild dromedary specimens with 1-1.06-fold read depths for covered regions. Our results highlight that despite recent methodological advances, obtaining ancient DNA (aDNA) from specimens recovered from hot, arid environments is still problematic. Hybridization protocols require specific optimization, and samples at the limit of DNA preservation need multiple replications of DNA extraction and hybridization capture as has been shown previously for Middle Pleistocene specimens.}, language = {en} } @article{ThomasCarvalhoHaileetal.2017, author = {Thomas, Jessica E. and Carvalho, Gary R. and Haile, James and Martin, Michael D. and Castruita, Jose A. Samaniego and Niemann, Jonas and Sinding, Mikkel-Holger S. and Sandoval-Velasco, Marcela and Rawlence, Nicolas J. and Fuller, Errol and Fjeldsa, Jon and Hofreiter, Michael and Stewart, John R. and Gilbert, M. Thomas P. and Knapp, Michael}, title = {An ‛Aukward' tale}, series = {Genes}, volume = {8}, journal = {Genes}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes8060164}, pages = {164}, year = {2017}, abstract = {One hundred and seventy-three years ago, the last two Great Auks, Pinguinus impennis, ever reliably seen were killed. Their internal organs can be found in the collections of the Natural History Museum of Denmark, but the location of their skins has remained a mystery. In 1999, Great Auk expert Errol Fuller proposed a list of five potential candidate skins in museums around the world. Here we take a palaeogenomic approach to test which—if any—of Fuller's candidate skins likely belong to either of the two birds. Using mitochondrial genomes from the five candidate birds (housed in museums in Bremen, Brussels, Kiel, Los Angeles, and Oldenburg) and the organs of the last two known individuals, we partially solve the mystery that has been on Great Auk scholars' minds for generations and make new suggestions as to the whereabouts of the still-missing skin from these two birds.}, language = {en} } @article{AlbertiGonzalezPaijmansetal.2018, author = {Alberti, Federica and Gonzalez, Javier and Paijmans, Johanna L. A. and Basler, Nikolas and Preick, Michaela and Henneberger, Kirstin and Trinks, Alexandra and Rabeder, Gernot and Conard, Nicholas J. and Muenzel, Susanne C. and Joger, Ulrich and Fritsch, Guido and Hildebrandt, Thomas and Hofreiter, Michael and Barlow, Axel}, title = {Optimized DNA sampling of ancient bones using Computed Tomography scans}, series = {Molecular ecology resources}, volume = {18}, journal = {Molecular ecology resources}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12911}, pages = {1196 -- 1208}, year = {2018}, abstract = {The prevalence of contaminant microbial DNA in ancient bone samples represents the principal limiting factor for palaeogenomic studies, as it may comprise more than 99\% of DNA molecules obtained. Efforts to exclude or reduce this contaminant fraction have been numerous but also variable in their success. Here, we present a simple but highly effective method to increase the relative proportion of endogenous molecules obtained from ancient bones. Using computed tomography (CT) scanning, we identify the densest region of a bone as optimal for sampling. This approach accurately identifies the densest internal regions of petrous bones, which are known to be a source of high-purity ancient DNA. For ancient long bones, CT scans reveal a high-density outermost layer, which has been routinely removed and discarded prior to DNA extraction. For almost all long bones investigated, we find that targeted sampling of this outermost layer provides an increase in endogenous DNA content over that obtained from softer, trabecular bone. This targeted sampling can produce as much as 50-fold increase in the proportion of endogenous DNA, providing a directly proportional reduction in sequencing costs for shotgun sequencing experiments. The observed increases in endogenous DNA proportion are not associated with any reduction in absolute endogenous molecule recovery. Although sampling the outermost layer can result in higher levels of human contamination, some bones were found to have more contamination associated with the internal bone structures. Our method is highly consistent, reproducible and applicable across a wide range of bone types, ages and species. We predict that this discovery will greatly extend the potential to study ancient populations and species in the genomics era.}, language = {en} } @article{SignorePaijmansHofreiteretal.2019, author = {Signore, Anthony V. and Paijmans, Johanna L. A. and Hofreiter, Michael and Fago, Angela and Weber, Roy E. and Springer, Mark S. and Campbell, Kevin L.}, title = {Emergence of a chimeric globin pseudogene and increased Hemoglobin Oxygen Affinity Underlie the evolution of aquatic specializations in Sirenia}, series = {Molecular biology and evolution}, volume = {36}, journal = {Molecular biology and evolution}, number = {6}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msz044}, pages = {1134 -- 1147}, year = {2019}, abstract = {As limits on O2 availability during submergence impose severe constraints on aerobic respiration, the oxygen binding globin proteins of marine mammals are expected to have evolved under strong evolutionary pressures during their land-to-sea transition. Here, we address this question for the order Sirenia by retrieving, annotating, and performing detailed selection analyses on the globin repertoire of the extinct Steller's sea cow (Hydrodamalis gigas), dugong (Dugong dugon), and Florida manatee (Trichechus manatus latirostris) in relation to their closest living terrestrial relatives (elephants and hyraxes). These analyses indicate most loci experienced elevated nucleotide substitution rates during their transition to a fully aquatic lifestyle. While most of these genes evolved under neutrality or strong purifying selection, the rate of nonsynonymous/synonymous replacements increased in two genes (Hbz-T1 and Hba-T1) that encode the α-type chains of hemoglobin (Hb) during each stage of life. Notably, the relaxed evolution of Hba-T1 is temporally coupled with the emergence of a chimeric pseudogene (Hba-T2/Hbq-ps) that contributed to the tandemly linked Hba-T1 of stem sirenians via interparalog gene conversion. Functional tests on recombinant Hb proteins from extant and ancestral sirenians further revealed that the molecular remodeling of Hba-T1 coincided with increased Hb-O2 affinity in early sirenians. Available evidence suggests that this trait evolved to maximize O2 extraction from finite lung stores and suppress tissue O2 offloading, thereby facilitating the low metabolic intensities of extant sirenians. In contrast, the derived reduction in Hb-O2 affinity in (sub)Arctic Steller's sea cows is consistent with fueling increased thermogenesis by these once colossal marine herbivores.}, language = {en} } @article{ChenLiZhangetal.2019, author = {Chen, Shun-Gang and Li, Ji and Zhang, Fan and Xiao, Bo and Hu, Jia-Ming and Cui, Yin-Qiu and Hofreiter, Michael and Hou, Xin-Dong and Sheng, Gui-Lian and Lai, Xu-Long and Yuan, Jun-Xia}, title = {Different maternal lineages revealed by ancient mitochondrial genome of Camelus bactrianus from China}, series = {Mitochondrial DNA Part A}, volume = {30}, journal = {Mitochondrial DNA Part A}, number = {7}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2470-1394}, doi = {10.1080/24701394.2019.1659250}, pages = {786 -- 793}, year = {2019}, abstract = {Domestic Bactrian camel (Camelus bactrianus) used to be one of the most important livestock species in Chinese history, as well as the major transport carrier on the ancient Silk Road. However, archeological studies on Chinese C. bactrianus are still limited, and molecular biology research on this species is mainly focused on modern specimens. In this study, we retrieved the complete mitochondrial genome from a C. bactrianus specimen, which was excavated from northwestern China and dated at 1290-1180 cal. Phylogenetic analyses using 18 mitochondrial genomes indicated that the C. bactrianus clade was divided into two maternal lineages. The majority of samples originating from Iran to Japan and Mongolia belong to subclade A1, while our sample together with two Mongolian individuals formed the much smaller subclade A2. Furthermore, the divergence time of these two maternal lineages was estimated as 165 Kya (95\% credibility interval 117-222 Kya), this might indicate that several different evolutionary lineages were incorporated into the domestic gene pool during the initial domestication process. Bayesian skyline plot (BSP) analysis a slow increase in female effective population size of C. bactrianus from 5000 years ago, which to the beginning of domestication of C. bactrianus. The present study also revealed that there were extensive exchanges of genetic information among C. bactrianus populations in regions along the Silk Road.}, language = {en} } @article{CasasMarceMarmesatSorianoetal.2017, author = {Casas-Marce, Mireia and Marmesat, Elena and Soriano, Laura and Martinez-Cruz, Begona and Lucena-Perez, Maria and Nocete, Francisco and Rodriguez-Hidalgo, Antonio and Canals, Antoni and Nadal, Jordi and Detry, Cleia and Bernaldez-Sanchez, Eloisa and Fernandez-Rodriguez, Carlos and Perez-Ripoll, Manuel and Stiller, Mathias and Hofreiter, Michael and Rodriguez, Alejandro and Revilla, Eloy and Delibes, Miguel and Godoy, Jose A.}, title = {Spatiotemporal Dynamics of Genetic Variation in the Iberian Lynx along Its Path to Extinction Reconstructed with Ancient DNA}, series = {Molecular biology and evolution}, volume = {34}, journal = {Molecular biology and evolution}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msx222}, pages = {2893 -- 2907}, year = {2017}, abstract = {There is the tendency to assume that endangered species have been both genetically and demographically healthier in the past, so that any genetic erosion observed today was caused by their recent decline. The Iberian lynx (Lynx pardinus) suffered a dramatic and continuous decline during the 20th century, and now shows extremely low genome- and species-wide genetic diversity among other signs of genomic erosion. We analyze ancient (N\&\#8201;=\&\#8201;10), historical (N\&\#8201;=\&\#8201;245), and contemporary (N\&\#8201;=\&\#8201;172) samples with microsatellite and mitogenome data to reconstruct the species' demography and investigate patterns of genetic variation across space and time. Iberian lynx populations transitioned from low but significantly higher genetic diversity than today and shallow geographical differentiation millennia ago, through a structured metapopulation with varying levels of diversity during the last centuries, to two extremely genetically depauperate and differentiated remnant populations by 2002. The historical subpopulations show varying extents of genetic drift in relation to their recent size and time in isolation, but these do not predict whether the populations persisted or went finally extinct. In conclusion, current genetic patterns were mainly shaped by genetic drift, supporting the current admixture of the two genetic pools and calling for a comprehensive genetic management of the ongoing conservation program. This study illustrates how a retrospective analysis of demographic and genetic patterns of endangered species can shed light onto their evolutionary history and this, in turn, can inform conservation actions.}, language = {en} } @article{GonzalezFortesKolbeFernandesetal.2016, author = {Gonz{\´a}lez-Fortes, Gloria M. and Kolbe, Ben and Fernandes, Daniel and Meleg, Ioana N. and Garcia-Vazquez, Ana and Pinto-Llona, Ana C. and Constantin, Silviu and de Torres, Trino J. and Ortiz, Jose E. and Frischauf, Christine and Rabeder, Gernot and Hofreiter, Michael and Barlow, Axel}, title = {Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears}, series = {Molecular ecology}, volume = {25}, journal = {Molecular ecology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.13800}, pages = {4907 -- 4918}, year = {2016}, abstract = {Ancient DNA studies have revolutionized the study of extinct species and populations, providing insights on phylogeny, phylogeography, admixture and demographic history. However, inferences on behaviour and sociality have been far less frequent. Here, we investigate the complete mitochondrial genomes of extinct Late Pleistocene cave bears and middle Holocene brown bears that each inhabited multiple geographically proximate caves in northern Spain. In cave bears, we find that, although most caves were occupied simultaneously, each cave almost exclusively contains a unique lineage of closely related haplotypes. This remarkable pattern suggests extreme fidelity to their birth site in cave bears, best described as homing behaviour, and that cave bears formed stable maternal social groups at least for hibernation. In contrast, brown bears do not show any strong association of mitochondrial lineage and cave, suggesting that these two closely related species differed in aspects of their behaviour and sociality. This difference is likely to have contributed to cave bear extinction, which occurred at a time in which competition for caves between bears and humans was likely intense and the ability to rapidly colonize new hibernation sites would have been crucial for the survival of a species so dependent on caves for hibernation as cave bears. Our study demonstrates the potential of ancient DNA to uncover patterns of behaviour and sociality in ancient species and populations, even those that went extinct many tens of thousands of years ago.}, language = {en} }