@misc{LamprechtNaujokatMargariaetal.2011, author = {Lamprecht, Anna-Lena and Naujokat, Stefan and Margaria, Tiziana and Steffen, Bernhard}, title = {Semantics-based composition of EMBOSS services}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {956}, issn = {1866-8372}, doi = {10.25932/publishup-43183}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431830}, pages = {23}, year = {2011}, abstract = {Background More than in other domains the heterogeneous services world in bioinformatics demands for a methodology to classify and relate resources in a both human and machine accessible manner. The Semantic Web, which is meant to address exactly this challenge, is currently one of the most ambitious projects in computer science. Collective efforts within the community have already led to a basis of standards for semantic service descriptions and meta-information. In combination with process synthesis and planning methods, such knowledge about types and services can facilitate the automatic composition of workflows for particular research questions. Results In this study we apply the synthesis methodology that is available in the Bio-jETI workflow management framework for the semantics-based composition of EMBOSS services. EMBOSS (European Molecular Biology Open Software Suite) is a collection of 350 tools (March 2010) for various sequence analysis tasks, and thus a rich source of services and types that imply comprehensive domain models for planning and synthesis approaches. We use and compare two different setups of our EMBOSS synthesis domain: 1) a manually defined domain setup where an intuitive, high-level, semantically meaningful nomenclature is applied to describe the input/output behavior of the single EMBOSS tools and their classifications, and 2) a domain setup where this information has been automatically derived from the EMBOSS Ajax Command Definition (ACD) files and the EMBRACE Data and Methods ontology (EDAM). Our experiments demonstrate that these domain models in combination with our synthesis methodology greatly simplify working with the large, heterogeneous, and hence manually intractable EMBOSS collection. However, they also show that with the information that can be derived from the (current) ACD files and EDAM ontology alone, some essential connections between services can not be recognized. Conclusions Our results show that adequate domain modeling requires to incorporate as much domain knowledge as possible, far beyond the mere technical aspects of the different types and services. Finding or defining semantically appropriate service and type descriptions is a difficult task, but the bioinformatics community appears to be on the right track towards a Life Science Semantic Web, which will eventually allow automatic service composition methods to unfold their full potential.}, language = {en} } @misc{MargariaSteffenKubczak2010, author = {Margaria, Tiziana and Steffen, Bernhard and Kubczak, Christian}, title = {Evolution support in heterogeneous service-oriented landscapes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {918}, issn = {1866-8372}, doi = {10.25932/publishup-43240}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432405}, pages = {15}, year = {2010}, abstract = {We present an approach that provides automatic or semi-automatic support for evolution and change management in heterogeneous legacy landscapes where (1) legacy heterogeneous, possibly distributed platforms are integrated in a service oriented fashion, (2) the coordination of functionality is provided at the service level, through orchestration, (3) compliance and correctness are provided through policies and business rules, (4) evolution and correctness-by-design are supported by the eXtreme Model Driven Development paradigm (XMDD) offered by the jABC (Margaria and Steffen in Annu. Rev. Commun. 57, 2004)—the model-driven service oriented development platform we use here for integration, design, evolution, and governance. The artifacts are here semantically enriched, so that automatic synthesis plugins can field the vision of Enterprise Physics: knowledge driven business process development for the end user. We demonstrate this vision along a concrete case study that became over the past three years a benchmark for Semantic Web Service discovery and mediation. We enhance the Mediation Scenario of the Semantic Web Service Challenge along the 2 central evolution paradigms that occur in practice: (a) Platform migration: platform substitution of a legacy system by an ERP system and (b) Backend extension: extension of the legacy Customer Relationship Management (CRM) and Order Management System (OMS) backends via an additional ERP layer.}, language = {en} } @misc{LamprechtMargariaSteffenetal.2008, author = {Lamprecht, Anna-Lena and Margaria, Tiziana and Steffen, Bernhard and Sczyrba, Alexander and Hartmeier, Sven and Giegerich, Robert}, title = {GeneFisher-P}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {868}, issn = {1866-8372}, doi = {10.25932/publishup-43424}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434241}, pages = {17}, year = {2008}, abstract = {Background: PCR primer design is an everyday, but not trivial task requiring state-of-the-art software. We describe the popular tool GeneFisher and explain its recent restructuring using workflow techniques. We apply a service-oriented approach to model and implement GeneFisher-P, a process-based version of the GeneFisher web application, as a part of the Bio-jETI platform for service modeling and execution. We show how to introduce a flexible process layer to meet the growing demand for improved user-friendliness and flexibility. Results: Within Bio-jETI, we model the process using the jABC framework, a mature model-driven, service-oriented process definition platform. We encapsulate remote legacy tools and integrate web services using jETI, an extension of the jABC for seamless integration of remote resources as basic services, ready to be used in the process. Some of the basic services used by GeneFisher are in fact already provided as individual web services at BiBiServ and can be directly accessed. Others are legacy programs, and are made available to Bio-jETI via the jETI technology. The full power of service-based process orientation is required when more bioinformatics tools, available as web services or via jETI, lead to easy extensions or variations of the basic process. This concerns for instance variations of data retrieval or alignment tools as provided by the European Bioinformatics Institute (EBI). Conclusions: The resulting service-and process-oriented GeneFisher-P demonstrates how basic services from heterogeneous sources can be easily orchestrated in the Bio-jETI platform and lead to a flexible family of specialized processes tailored to specific tasks.}, language = {en} } @misc{MargariaKubczakSteffen2008, author = {Margaria, Tiziana and Kubczak, Christian and Steffen, Bernhard}, title = {Bio-jETI}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {822}, doi = {10.25932/publishup-42886}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428868}, pages = {19}, year = {2008}, abstract = {Background: With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Methods: Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. Conclusions: As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way.}, language = {en} } @article{NaujokatNeubauerLamprechtetal.2014, author = {Naujokat, Stefan and Neubauer, Johannes and Lamprecht, Anna-Lena and Steffen, Bernhard and Joerges, Sven and Margaria, Tiziana}, title = {Simplicity-first model-based plug-in development}, series = {Software : practice \& experience}, volume = {44}, journal = {Software : practice \& experience}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0038-0644}, doi = {10.1002/spe.2243}, pages = {277 -- 297}, year = {2014}, abstract = {In this article, we present our experience with over a decade of strict simplicity orientation in the development and evolution of plug-ins. The point of our approach is to enable our graphical modeling framework jABC to capture plug-in development in a domain-specific setting. The typically quite tedious and technical plug-in development is shifted this way from a programming task to the modeling level, where it can be mastered also by application experts without programming expertise. We show how the classical plug-in development profits from a systematic domain-specific API design and how the level of abstraction achieved this way can be further enhanced by defining adequate building blocks for high-level plug-in modeling. As the resulting plug-in models can be compiled and deployed automatically, our approach decomposes plug-in development into three phases where only the realization phase requires plug-in-specific effort. By using our modeling framework jABC, this effort boils down to graphical, tool-supported process modeling. Furthermore, we support the automatic completion of process sketches for executability. All this will be illustrated along the most recent plug-in-based evolution of the jABC framework, which witnessed quite some bootstrapping effects.}, language = {en} } @article{BakeraMargariaRenneretal.2011, author = {Bakera, Marco and Margaria, Tiziana and Renner, Clemens D. and Steffen, Bernhard}, title = {Game-Based model checking for reliable autonomy in space}, series = {Journal of aerospace computing, information, and communication}, volume = {8}, journal = {Journal of aerospace computing, information, and communication}, number = {4}, publisher = {American Institute of Aeronautics and Astronautics}, address = {Reston}, issn = {1940-3151}, doi = {10.2514/1.32013}, pages = {100 -- 114}, year = {2011}, abstract = {Autonomy is an emerging paradigm for the design and implementation of managed services and systems. Self-managed aspects frequently concern the communication of systems with their environment. Self-management subsystems are critical, they should thus be designed and implemented as high-assurance components. Here, we propose to use GEAR, a game-based model checker for the full modal mu-calculus, and derived, more user-oriented logics, as a user friendly tool that can offer automatic proofs of critical properties of such systems. Designers and engineers can interactively investigate automatically generated winning strategies resulting from the games, this way exploring the connection between the property, the system, and the proof. The benefits of the approach are illustrated on a case study that concerns the ExoMars Rover.}, language = {en} } @article{JoergesMargariaSteffen2011, author = {J{\"o}rges, Sven and Margaria, Tiziana and Steffen, Bernhard}, title = {Assuring property conformance of code generators via model checking}, series = {Formal aspects of computing : the international journal of formal methods}, volume = {23}, journal = {Formal aspects of computing : the international journal of formal methods}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0934-5043}, doi = {10.1007/s00165-010-0169-9}, pages = {589 -- 606}, year = {2011}, abstract = {Automatic code generation is an essential cornerstone of today's model-driven approaches to software engineering. Thus a key requirement for the success of this technique is the reliability and correctness of code generators. This article describes how we employ standard model checking-based verification to check that code generator models developed within our code generation framework Genesys conform to (temporal) properties. Genesys is a graphical framework for the high-level construction of code generators on the basis of an extensible library of well-defined building blocks along the lines of the Extreme Model-Driven Development paradigm. We will illustrate our verification approach by examining complex constraints for code generators, which even span entire model hierarchies. We also show how this leads to a knowledge base of rules for code generators, which we constantly extend by e.g. combining constraints to bigger constraints, or by deriving common patterns from structurally similar constraints. In our experience, the development of code generators with Genesys boils down to re-instantiating patterns or slightly modifying the graphical process model, activities which are strongly supported by verification facilities presented in this article.}, language = {en} } @unpublished{KroeningMargariaWoodcock2011, author = {Kr{\"o}ning, Daniel and Margaria, Tiziana and Woodcock, Jim}, title = {Untitled}, series = {Formal aspects of computing : the international journal of formal methods}, volume = {23}, journal = {Formal aspects of computing : the international journal of formal methods}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0934-5043}, doi = {10.1007/s00165-011-0201-8}, pages = {585 -- 588}, year = {2011}, language = {en} } @unpublished{MargariaHinchey2013, author = {Margaria, Tiziana and Hinchey, Mike}, title = {Simplicity in IT - the power of less}, series = {Computer : innovative technology for computer professionals}, volume = {46}, journal = {Computer : innovative technology for computer professionals}, number = {11}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Los Alamitos}, issn = {0018-9162}, doi = {10.1109/MC.2013.397}, pages = {23 -- 25}, year = {2013}, abstract = {Simplicity is a mindset, a way of looking at solutions, an extremely wide-ranging philosophical stance on the world, and thus a deeply rooted cultural paradigm. The culture of "less" can be profoundly disruptive, cutting out existing "standard" elements from products and business models, thereby revolutionizing entire markets.}, language = {en} } @article{BlumBoldeaMagedanzetal.2010, author = {Blum, Niklas and Boldea, Irina and Magedanz, Thomas and Margaria, Tiziana}, title = {Service-oriented access to next generation networks : from service creation to execution}, issn = {1383-469X}, doi = {10.1007/s11036-010-0222-1}, year = {2010}, abstract = {Existing telecommunication networks and classical roles of operators are subject to fundamental change. Many network operators are currently seeking for new sources to generate revenue by exposing network capabilities to 3rd party service providers. At the same time we can observe that services on the World Wide Web (WWW) are becoming mature in terms of the definition of APIs that are offered towards other services. The combinations of those services are commonly referred to as Web 2.0 mash-ups. Rapid service design and creation becomes therefore important to meet the requirements in a changing technology and competitive market environment. This report describes our approach to include Next Generation Networks (NGN)-based telecommunications application enabler into complex services by defining a service broker that mediates between 3rd party applications and NGN service enablers. It provides policy-driven orchestration mechanisms for service enablers, a service authorization functionality, and a service discovery interface for Service Creation Environments. The work has been implemented as part of the Open SOA Telco Playground testbed at Fraunhofer FOKUS.}, language = {en} }