@article{StelzelBohleSchauenburgetal.2018, author = {Stelzel, Christine and Bohle, Hannah and Schauenburg, Gesche and Walter, Henrik and Granacher, Urs and Rapp, Michael Armin and Heinzel, Stephan}, title = {Contribution of the Lateral Prefrontal Cortex to Cognitive-Postural Multitasking}, series = {Frontiers in psychologie}, volume = {9}, journal = {Frontiers in psychologie}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2018.01075}, pages = {12}, year = {2018}, abstract = {There is evidence for cortical contribution to the regulation of human postural control. Interference from concurrently performed cognitive tasks supports this notion, and the lateral prefrontal cortex (lPFC) has been suggested to play a prominent role in the processing of purely cognitive as well as cognitive-postural dual tasks. The degree of cognitive-motor interference varies greatly between individuals, but it is unresolved whether individual differences in the recruitment of specific lPFC regions during cognitive dual tasking are associated with individual differences in cognitive-motor interference. Here, we investigated inter-individual variability in a cognitive-postural multitasking situation in healthy young adults (n = 29) in order to relate these to inter-individual variability in lPFC recruitment during cognitive multitasking. For this purpose, a oneback working memory task was performed either as single task or as dual task in order to vary cognitive load. Participants performed these cognitive single and dual tasks either during upright stance on a balance pad that was placed on top of a force plate or during fMRI measurement with little to no postural demands. We hypothesized dual one-back task performance to be associated with lPFC recruitment when compared to single one-back task performance. In addition, we expected individual variability in lPFC recruitment to be associated with postural performance costs during concurrent dual one-back performance. As expected, behavioral performance costs in postural sway during dual-one back performance largely varied between individuals and so did lPFC recruitment during dual one-back performance. Most importantly, individuals who recruited the right mid-lPFC to a larger degree during dual one-back performance also showed greater postural sway as measured by larger performance costs in total center of pressure displacements. This effect was selective to the high-load dual one-back task and suggests a crucial role of the right lPFC in allocating resources during cognitivemotor interference. Our study provides further insight into the mechanisms underlying cognitive-motor multitasking and its impairments.}, language = {en} } @misc{StelzelBohleSchauenburgetal.2018, author = {Stelzel, Christine and Bohle, Hannah and Schauenburg, Gesche and Walter, Henrik and Granacher, Urs and Rapp, Michael Armin and Heinzel, Stephan}, title = {Contribution of the Lateral Prefrontal Cortex to Cognitive-Postural Multitasking}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {489}, issn = {1866-8364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421140}, pages = {12}, year = {2018}, abstract = {There is evidence for cortical contribution to the regulation of human postural control. Interference from concurrently performed cognitive tasks supports this notion, and the lateral prefrontal cortex (lPFC) has been suggested to play a prominent role in the processing of purely cognitive as well as cognitive-postural dual tasks. The degree of cognitive-motor interference varies greatly between individuals, but it is unresolved whether individual differences in the recruitment of specific lPFC regions during cognitive dual tasking are associated with individual differences in cognitive-motor interference. Here, we investigated inter-individual variability in a cognitive-postural multitasking situation in healthy young adults (n = 29) in order to relate these to inter-individual variability in lPFC recruitment during cognitive multitasking. For this purpose, a oneback working memory task was performed either as single task or as dual task in order to vary cognitive load. Participants performed these cognitive single and dual tasks either during upright stance on a balance pad that was placed on top of a force plate or during fMRI measurement with little to no postural demands. We hypothesized dual one-back task performance to be associated with lPFC recruitment when compared to single one-back task performance. In addition, we expected individual variability in lPFC recruitment to be associated with postural performance costs during concurrent dual one-back performance. As expected, behavioral performance costs in postural sway during dual-one back performance largely varied between individuals and so did lPFC recruitment during dual one-back performance. Most importantly, individuals who recruited the right mid-lPFC to a larger degree during dual one-back performance also showed greater postural sway as measured by larger performance costs in total center of pressure displacements. This effect was selective to the high-load dual one-back task and suggests a crucial role of the right lPFC in allocating resources during cognitivemotor interference. Our study provides further insight into the mechanisms underlying cognitive-motor multitasking and its impairments.}, language = {en} } @article{HolzBoeckerSchlierJennenSteinmetzetal.2018, author = {Holz, Nathalie E. and Boecker-Schlier, Regina and Jennen-Steinmetz, Christine and Hohm, Erika and Buchmann, Arlette F. and Blomeyer, Dorothea and Baumeister, Sarah and Plichta, Michael M. and Esser, G{\"u}nter and Schmidt, Martin and Meyer-Lindenberg, Andreas and Banaschewski, Tobias and Brandeis, Daniel and Laucht, Manfred}, title = {Early maternal care may counteract familial liability for psychopathology in the reward circuitry}, series = {Social Cognitive and Affective Neuroscience}, volume = {13}, journal = {Social Cognitive and Affective Neuroscience}, number = {11}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1749-5016}, doi = {10.1093/scan/nsy087}, pages = {1191 -- 1201}, year = {2018}, abstract = {Reward processing is altered in various psychopathologies and has been shown to be susceptible to genetic and environmental influences. Here, we examined whether maternal care may buffer familial risk for psychiatric disorders in terms of reward processing. Functional magnetic resonance imaging during a monetary incentive delay task was acquired in participants of an epidemiological cohort study followed since birth (N = 172, 25 years). Early maternal stimulation was assessed during a standardized nursing/playing setting at the age of 3 months. Parental psychiatric disorders (familial risk) during childhood and the participants' previous psychopathology were assessed by diagnostic interview. With high familial risk, higher maternal stimulation was related to increasing activation in the caudate head, the supplementary motor area, the cingulum and the middle frontal gyrus during reward anticipation, with the opposite pattern found in individuals with no familial risk. In contrast, higher maternal stimulation was associated with decreasing caudate head activity during reward delivery and reduced levels of attention deficit hyperactivity disorder (ADHD) in the high-risk group. Decreased caudate head activity during reward anticipation and increased activity during delivery were linked to ADHD. These findings provide evidence of a long-term association of early maternal stimulation on both adult neurobiological systems of reward underlying externalizing behavior and ADHD during development.}, language = {en} } @article{WeymarBradleySegeetal.2018, author = {Weymar, Mathias and Bradley, Margaret M. and Sege, Christopher T. and Lang, Peter J.}, title = {Neural activation and memory for natural scenes}, series = {Psychophysiology : journal of the Society for Psychophysiological Research}, volume = {55}, journal = {Psychophysiology : journal of the Society for Psychophysiological Research}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {0048-5772}, doi = {10.1111/psyp.13197}, pages = {12}, year = {2018}, abstract = {Stimulus repetition elicits either enhancement or suppression in neural activity, and a recent fMRI meta-analysis of repetition effects for visual stimuli (Kim, 2017) reported cross-stimulus repetition enhancement in medial and lateral parietal cortex, as well as regions of prefrontal, temporal, and posterior cingulate cortex. Repetition enhancement was assessed here for repeated and novel scenes presented in the context of either an explicit episodic recognition task or an implicit judgment task, in order to study the role of spontaneous retrieval of episodic memories. Regardless of whether episodic memory was explicitly probed or not, repetition enhancement was found in medial posterior parietal (precuneus/cuneus), lateral parietal cortex (angular gyrus), as well as in medial prefrontal cortex (frontopolar), which did not differ by task. Enhancement effects in the posterior cingulate cortex were significantly larger during explicit compared to implicit task, primarily due to a lack of functional activity for new scenes. Taken together, the data are consistent with an interpretation that medial and (ventral) lateral parietal cortex are associated with spontaneous episodic retrieval, whereas posterior cingulate cortical regions may reflect task or decision processes.}, language = {en} }