@article{KnapmeyerEndrunKruegerGeissler2017, author = {Knapmeyer-Endrun, Brigitte and Kr{\"u}ger, Frank and Geissler, Wolfram H.}, title = {Upper mantle structure across the Trans-European Suture Zone imaged by S-receiver functions}, series = {Earth \& planetary science letters}, volume = {458}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, organization = {PASSEQ Working Grp}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.11.011}, pages = {429 -- 441}, year = {2017}, abstract = {We present a high-resolution study of the upper mantle structure of Central Europe, including the western part of the East European Platform, based on S-receiver functions of 345 stations. A distinct contrast is found between Phanerozoic Europe and the East European Craton across the Trans-European Suture Zone. To the west, a pronounced velocity reduction with depth interpreted as lithosphere-asthenosphere boundary (LAB) is found at an average depth of 90 km. Beneath the craton, no strong and continuous LAB conversion is observed. Instead we find a distinct velocity reduction within the lithosphere, at 80-120 km depth. This mid-lithospheric discontinuity (MLD) is attributed to a compositional boundary between depleted and more fertile lithosphere created by late Proterozoic metasomatism. A potential LAB phase beneath the craton is very weak and varies in depth between 180 and 250 km, consistent with a reduced velocity contrast between the lower lithosphere and the asthenosphere. Within the Trans-European Suture Zone, lithospheric structure is characterized by strong heterogeneity. A dipping or step-wise increase to LAB depth of 150 km is imaged from Phanerozoic Europe to 20-22 degrees E, whereas no direct connection to the cratonic LAB or MLD to the east is apparent. At larger depths, a positive conversion associated with the lower boundary of the asthenosphere is imaged at 210-250 km depth beneath Phanerozoic Europe, continuing down to 300 km depth beneath the craton. Conversions from both 410 km and 660 km discontinuities are found at their nominal depth beneath Phanerozoic Europe, and the discontinuity at 410 km depth can also be traced into the craton. A potential negative conversion on top of the 410 km discontinuity found in migrated images is analyzed by modeling and attributed to interference with other converted phases.}, language = {en} } @article{MatosSilveiraMatiasetal.2015, author = {Matos, Catarina and Silveira, Graca and Matias, Luis and Caldeira, Rita and Ribeiro, M. Luisa and Dias, Nuno A. and Kr{\"u}ger, Frank and Bento dos Santos, Telmo}, title = {Upper crustal structure of Madeira Island revealed from ambient noise tomography}, series = {Journal of volcanology and geothermal research}, volume = {298}, journal = {Journal of volcanology and geothermal research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0377-0273}, doi = {10.1016/j.jvolgeores.2015.03.017}, pages = {136 -- 145}, year = {2015}, abstract = {We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 20 tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{LipkeZitzmannAmbergeretal.2007, author = {Lipke, Katrin and Zitzmann, Max and Amberger, Manuel and Ehlert, Carsten and R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and Ohrnberger, Matthias}, title = {Traveltime residuals at regional and teleseismic distances for SE-Asia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14117}, year = {2007}, abstract = {Traveltime residuals for worldwide seismic stations are calculated. We use P and S waves from earthquakes in SE-Asia at teleseismic and regional distances. The obtained station residuals help to enhance earthquake localisation. Furthermore we calculated regional source dependent station residuals. They show a systematic dependence of the locality of the source. These source dependent residuals reflect heterogenities along the path and can be used for a refinement of earthquake localisation.}, language = {en} } @article{KnapmeyerEndrunKruegerLegendreetal.2013, author = {Knapmeyer-Endrun, Brigitte and Kr{\"u}ger, Frank and Legendre, C. P. and Geissler, Wolfram H.}, title = {Tracing the influence of the trans-european suture zone into the mantle transition zone}, series = {Earth \& planetary science letters}, volume = {363}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, organization = {PASSEQ Working Grp}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.12.028}, pages = {73 -- 87}, year = {2013}, abstract = {Cratons with their thick lithospheric roots can influence the thermal structure, and thus the convective flow, in the surrounding mantle. As mantle temperatures are hard to measure directly, depth variations in the mantle transition zone (MTZ) discontinuities are often employed as a proxy. Here, we use a large new data set of P-receiver functions to map the 410 km and 660 km discontinuities beneath the western edge of the East European Craton and adjacent Phanerozoic Europe across the most fundamental lithospheric boundary in Europe, the Trans-European Suture Zone (TESZ). We observe significantly shorter travel times for conversions from both MTZ discontinuities within the craton, caused by the high velocities of the cratonic root. By contrast, the differential travel time across the MTZ is normal to only slightly raised. This implies that any insulating effect of the cratonic keel does not reach the MTZ. In contrast to earlier observations in Siberia, we do not find any trace of a discontinuity at 520 km depth, which indicates a rather dry MTZ beneath the western edge of the craton. Within most of covered Phanerozoic Europe, the MTZ differential travel time is remarkably uniform and in agreement with standard Earth models. No widespread thermal effects of the various episodes of Caledonian and Variscan subduction that took place during the amalgamation of the continent remain. Only more recent tectonic events, related to Alpine subduction and Quarternary volcanism in the Eifel area, can be traced. While the East European craton shows no distinct imprint into the MTZ, we discover the signature of the TESZ in the MTZ in the form of a linear region of about 350 km width with a 1.5 s increase in differential travel time, which could either be caused by high water content or decreased temperature. Taking into account results of recent S-wave tomographies, raised water content in the MTZ cannot be the main cause for this observation. Accordingly, we explain the increase, equivalent to a 15 km thicker MTZ, by a temperature decrease of about 80 K. We discuss two alternative models for this temperature reduction, either a remnant of subduction or an indication of downwelling due to small-scale, edge-driven convection caused by the contrast in lithospheric thickness across the TESZ. Any subducted lithosphere found in the MTZ at this location is unlikely to be related to Variscan subduction along the TESZ, though, as Eurasia has moved significantly northward since the Variscan orogeny.}, language = {en} } @article{KruegerGrosserBaumbachetal.1998, author = {Kr{\"u}ger, Frank and Grosser, H. and Baumbach, M. and Berckhemer, Hans}, title = {The Erzincan (Turkey) earthquake (Ms 6.8) of March 13, 1992 and its aftershock sequence}, year = {1998}, language = {en} } @article{KruegerScherbaum2014, author = {Kr{\"u}ger, Frank and Scherbaum, Frank}, title = {The 29 September 1969, Ceres, South Africa, Earthquake: full waveform moment tensor inversion for point source and kinematic source parameters}, series = {Bulletin of the Seismological Society of America}, volume = {104}, journal = {Bulletin of the Seismological Society of America}, number = {1}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120130209}, pages = {576 -- 581}, year = {2014}, abstract = {The Ceres earthquake of 29 September 1969 is the largest known earthquake in southern Africa. Digitized analog recordings from Worldwide Standardized Seismographic Network stations (Powell and Fries, 1964) are used to retrieve the point source moment tensor and the most likely centroid depth of the event using full waveform modeling. A scalar seismic moment of 2.2-2.4 x 10(18) N center dot m corresponding to a moment magnitude of 6.2-6.3 is found. The analysis confirms the pure strike-slip mechanism previously determined from onset polarities by Green and Bloch (1971). Overall good agreement with the fault orientation previously estimated from local aftershock recordings is found. The centroid depth can be constrained to be less than 15 km. In a second analysis step, we use a higher order moment tensor based inversion scheme for simple extended rupture models to constrain the lateral fault dimensions. We find rupture propagated unilaterally for 4.7 s from east-southwest to west-northwest for about 17 km ( average rupture velocity of about 3: 1 km/s).}, language = {en} } @article{RoesslerKruegerRuempkeretal.2006, author = {R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and R{\"u}mpker, Georg and Psencik, Ivan}, title = {Tensile source components of swarm events in West Bohemia in 2000 by considering seismic anisotropy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12975}, year = {2006}, abstract = {Earthquake swarms occur frequently in West Bohemia, Central Europe. Their occurrence is correlated with and propably triggered by fluids that escape on the earth's surface near the epicentres. These fluids raise up periodically from a seemingbly deep-seated source in the upper mantle. Moment tensors for swarm events in 1997 indicate tensile faulting. However, they were determined under assumption of seismic isotropy although anisotropy can be observed. Anisotropy may obscure moment tensors and their interpretation. In 2000, more than 10,000 swarm earthquakes occurred near Novy Kostel, West Bohemia. Event triggering by fluid injection is likely. Activity lasted from 28/08 until 31/12/00 (9 phases) with maximum ML=3.2. High quality P-wave seismograms were used to retrieve the source mechanisms for 112 events between 28/08/00 and 30/10/00 using > 20 stations. We determine the source geometry using a new algorithm and different velocity models including anisotropy. From inversions of P waves we observe ML<3.2, strike-slip events on steep N-S oriented faults with additional normal or reverse components. Tensile components seem to be evident for more than 60\% of the processed swarm events in West Bohemia during the phases 1-7. Being most significant at great depths and at phases 1-4 during the swarm they are time and location dependent. Although tensile components are reduced when anisotropy is assumed they persist and seem to be important. They can be explained by pore-pressure changes due to the injection of fluids that raise up. Our findings agree with other observations e.g. correlation of fluid transport and seismicity, variations in b-value, forcing rate, and in pore pressure diffusion. Tests of our results show their significance.}, language = {en} } @misc{LipkeKruegerRoessler2008, author = {Lipke, Katrin and Kr{\"u}ger, Frank and R{\"o}ßler, Dirk}, title = {Subduction zone structure along Sumatra from receiver functions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18260}, year = {2008}, abstract = {Receiver functions are a good tool to investigate the seismotectonic structure beneath the a seismic station. In this study we apply the method to stations situated on or near Sumatra to find constraints on a more detailed velocity model which should improve earthquake localisation. We estimate shallow Moho-depths (~ 21 km) close to the trench and depths of ~30 km at greater distances. First evidences for the dip direction of the slab of ~60° are provided. Receiver functions were calculated for 20 stations for altogether 110 earthquakes in the distance range between 30° and 95° from the receiver. However the number of receiver functions per station is strongly variable as it depends on the installation date, the signal-to-noise-ratio of the station and the reliability of the acquisition.}, language = {en} } @article{HannemannKruegerDahmetal.2017, author = {Hannemann, Katrin and Kr{\"u}ger, Frank and Dahm, Torsten and Lange, Dietrich}, title = {Structure of the oceanic lithosphere and upper mantle north of the Gloria Fault in the eastern mid-Atlantic by receiver function analysis}, series = {Journal of geophysical research : Solid earth}, volume = {122}, journal = {Journal of geophysical research : Solid earth}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2016JB013582}, pages = {7927 -- 7950}, year = {2017}, abstract = {Receiver functions (RF) have been used for several decades to study structures beneath seismic stations. Although most available stations are deployed on shore, the number of ocean bottom station (OBS) experiments has increased in recent years. Almost all OBSs have to deal with higher noise levels and a limited deployment time (approximate to 1year), resulting in a small number of usable records of teleseismic earthquakes. Here we use OBSs deployed as midaperture array in the deep ocean (4.5-5.5km water depth) of the eastern mid-Atlantic. We use evaluation criteria for OBS data and beamforming to enhance the quality of the RFs. Although some stations show reverberations caused by sedimentary cover, we are able to identify the Moho signal, indicating a normal thickness (5-8km) of oceanic crust. Observations at single stations with thin sediments (300-400m) indicate that a probable sharp lithosphere-asthenosphere boundary (LAB) might exist at a depth of approximate to 70-80km which is in line with LAB depth estimates for similar lithospheric ages in the Pacific. The mantle discontinuities at approximate to 410km and approximate to 660km are clearly identifiable. Their delay times are in agreement with PREM. Overall the usage of beam-formed earthquake recordings for OBS RF analysis is an excellent way to increase the signal quality and the number of usable events.}, language = {en} } @article{KruegerOhrnberger2005, author = {Kr{\"u}ger, Frank and Ohrnberger, Matthias}, title = {Spatio-temporal source characteristics of the 26 December 2004 Sumatra earthquake as imaged by teleseismic broadband arrays}, year = {2005}, abstract = {We test the capability of broadband arrays at teleseismic distances to image the spatio-temporal characteristics of the seismic energy release during the Dec 26, 2004 Sumatra earthquake at early observation times. Using a non-plane-wave array location technique previously reported values for rupture length (about 1150 km), duration (about 480 s), and average rupture velocity (2.4-2.7 km/s) are confirmed. Three dominant energy releases are identified: one near the hypocenter, a second at 6 degrees N94 degrees E about 130 s later and a third one after 300 s at 9 degrees N92-93 degrees E. The spatio-temporal distribution of the radiated seismic energy in the source region is calculated from the stacked broadband recordings of two arrays in Germany and Japan and results in rough estimates of the total seismic energy of 0.55.10(18) Nm (GRSN) and 1.53.10(18) Nm (FNET) respectively. Changes in the relative ratio of energy as function of spatio-temporal location indicate a rotation of the focal mechanism during the rupture process}, language = {en} }