@misc{BisiBalogunTorlak2017, author = {Bisi-Balogun, Adebisi and Torlak, Firdevs}, title = {Outcomes following hip and quadriceps strengthening exercises for patellofemoral syndrome}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400413}, pages = {21}, year = {2017}, abstract = {There is growing evidence to support change in the rehabilitation strategy of patellofemoral pain syndrome (PFPS) from traditional quadriceps strengthening exercises to inclusion of hip musculature strengthening in individuals with PFPS. Several studies have evaluated effects of quadriceps and hip musculature strengthening on PFPS with varying outcomes on pain and function. This systematic review and meta-analysis aims to synthesize outcomes of pain and function post-intervention and at follow-up to determine whether outcomes vary depending on the exercise strategy in both the short and long term. Electronic databases including MEDLINE, EMBASE, CINAHL, Web of Science, PubMed, Pedro database, Proquest, Science direct, and EBscoHost databases were searched for randomized control trials published between 1st of January 2005 and 31st of June 2015, comparing the outcomes of pain and function following quadriceps strengthening and hip musculature strengthening exercises in patients with PFPS. Two independent reviewers assessed each paper for inclusion and quality. Means and SDs were extracted from each included study to allow effect size calculations and comparison of results. Six randomized control trials met the inclusion criteria. Limited to moderate evidence indicates that hip abductor strengthening was associated with significantly lower pain post-intervention (SMD -0.88, -1.28 to -0.47 95\% CI), and at 12 months (SMD -3.10, -3.71 to -2.50 95\% CI) with large effect sizes (greater than 0.80) compared to quadriceps strengthening. Our findings suggest that incorporating hip musculature strengthening in management of PFPS tailored to individual ability will improve short-term and long-term outcomes of rehabilitation. Further research evaluating the effects of quadriceps and hip abductors strengthening focusing on reduction in anterior knee pain and improvement in function in management of PFPS is needed.}, language = {en} } @article{JafarnezhadgeroAlaviMehrGranacher2019, author = {Jafarnezhadgero, Amir Ali and Alavi-Mehr, Seyed Majid and Granacher, Urs}, title = {Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {5}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0216818}, pages = {14}, year = {2019}, abstract = {Physical fatigue and pronated feet constitute two risk factors for running-related lower limb injuries. Accordingly, different running shoe companies designed anti-pronation shoes with medial support to limit over pronation in runners. However, there is little evidence on the effectiveness and clinical relevance of anti-pronation shoes. This study examined lower limb kinematics and kinetics in young female runners with pronated feet during running with antipronation versus regular (neutral) running shoes in unfatigued and fatigued condition. Twenty-six female runners aged 24.1±5.6 years with pronated feet volunteered to participate in this study. Kinetic (3D Kistler force plate) and kinematic analyses (Vicon motion analysis system) were conducted to record participants' ground reaction forces and joint kinematics when running with anti-pronation compared with neutral running shoes. Physical fatigue was induced through an individualized submaximal running protocol on a motorized treadmill using rate of perceived exertion and heart rate monitoring. The statistical analyses indicated significant main effects of "footwear" for peak ankle inversion, peak ankle eversion, and peak hip internal rotation angles (p<0.03; d = 0.46-0.95). Pair-wise comparisons revealed a significantly greater peak ankle inversion angle (p<0.03; d = 0.95; 2.70°) and smaller peak eversion angle (p<0.03; d = 0.46; 2.53°) when running with anti-pronation shoes compared with neutral shoes. For kinetic data, significant main effects of "footwear" were found for peak ankle dorsiflexor moment, peak knee extensor moment, peak hip flexor moment, peak hip extensor moment, peak hip abductor moment, and peak hip internal rotator moment (p<0.02; d = 1.00-1.79). For peak positive hip power in sagittal and frontal planes and peak negative hip power in horizontal plane, we observed significant main effects of "footwear" (p<0.03; d = 0.92-1.06). Pairwise comparisons revealed that peak positive hip power in sagittal plane (p<0.03; d = 0.98; 2.39 w/kg), peak positive hip power in frontal plane (p = 0.014; d = 1.06; 0.54 w/kg), and peak negative hip power in horizontal plane (p<0.03; d = 0.92; 0.43 w/kg) were greater with anti-pronation shoes. Furthermore, the statistical analyses indicated significant main effects of "Fatigue" for peak ankle inversion, peak ankle eversion, and peak knee external rotation angles. Pair-wise comparisons revealed a fatigue-induced decrease in peak ankle inversion angle (p<0.01; d = 1.23; 2.69°) and a fatigue-induced increase in peak knee external rotation angle (p<0.05; d = 0.83; 5.40°). In addition, a fatigue-related increase was found for peak ankle eversion (p<0.01; d = 1.24; 2.67°). For kinetic data, we observed a significant main effect of "Fatigue" for knee flexor moment, knee internal rotator moment, and hip extensor moment (p<0.05; d = 0.83-1.01). The statistical analyses indicated significant a main effect of "Fatigue" for peak negative ankle power in sagittal plane (p<0.01; d = 1.25). Finally, we could not detect any significant footwear by fatigue interaction effects for all measures of joint kinetics and kinematics. Running in anti-pronation compared with neutral running shoes produced lower peak moments and powers in lower limb joints and better control in rear foot eversion. Physical fatigue increased peak moments and powers in lower limb joints irrespective of the type of footwear.}, language = {en} } @misc{JafarnezhadgeroAlaviMehrGranacher2019, author = {Jafarnezhadgero, Amir Ali and Alavi-Mehr, Seyed Majid and Granacher, Urs}, title = {Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {560}, issn = {1866-8364}, doi = {10.25932/publishup-43541}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435415}, pages = {14}, year = {2019}, abstract = {Physical fatigue and pronated feet constitute two risk factors for running-related lower limb injuries. Accordingly, different running shoe companies designed anti-pronation shoes with medial support to limit over pronation in runners. However, there is little evidence on the effectiveness and clinical relevance of anti-pronation shoes. This study examined lower limb kinematics and kinetics in young female runners with pronated feet during running with antipronation versus regular (neutral) running shoes in unfatigued and fatigued condition. Twenty-six female runners aged 24.1±5.6 years with pronated feet volunteered to participate in this study. Kinetic (3D Kistler force plate) and kinematic analyses (Vicon motion analysis system) were conducted to record participants' ground reaction forces and joint kinematics when running with anti-pronation compared with neutral running shoes. Physical fatigue was induced through an individualized submaximal running protocol on a motorized treadmill using rate of perceived exertion and heart rate monitoring. The statistical analyses indicated significant main effects of "footwear" for peak ankle inversion, peak ankle eversion, and peak hip internal rotation angles (p<0.03; d = 0.46-0.95). Pair-wise comparisons revealed a significantly greater peak ankle inversion angle (p<0.03; d = 0.95; 2.70°) and smaller peak eversion angle (p<0.03; d = 0.46; 2.53°) when running with anti-pronation shoes compared with neutral shoes. For kinetic data, significant main effects of "footwear" were found for peak ankle dorsiflexor moment, peak knee extensor moment, peak hip flexor moment, peak hip extensor moment, peak hip abductor moment, and peak hip internal rotator moment (p<0.02; d = 1.00-1.79). For peak positive hip power in sagittal and frontal planes and peak negative hip power in horizontal plane, we observed significant main effects of "footwear" (p<0.03; d = 0.92-1.06). Pairwise comparisons revealed that peak positive hip power in sagittal plane (p<0.03; d = 0.98; 2.39 w/kg), peak positive hip power in frontal plane (p = 0.014; d = 1.06; 0.54 w/kg), and peak negative hip power in horizontal plane (p<0.03; d = 0.92; 0.43 w/kg) were greater with anti-pronation shoes. Furthermore, the statistical analyses indicated significant main effects of "Fatigue" for peak ankle inversion, peak ankle eversion, and peak knee external rotation angles. Pair-wise comparisons revealed a fatigue-induced decrease in peak ankle inversion angle (p<0.01; d = 1.23; 2.69°) and a fatigue-induced increase in peak knee external rotation angle (p<0.05; d = 0.83; 5.40°). In addition, a fatigue-related increase was found for peak ankle eversion (p<0.01; d = 1.24; 2.67°). For kinetic data, we observed a significant main effect of "Fatigue" for knee flexor moment, knee internal rotator moment, and hip extensor moment (p<0.05; d = 0.83-1.01). The statistical analyses indicated significant a main effect of "Fatigue" for peak negative ankle power in sagittal plane (p<0.01; d = 1.25). Finally, we could not detect any significant footwear by fatigue interaction effects for all measures of joint kinetics and kinematics. Running in anti-pronation compared with neutral running shoes produced lower peak moments and powers in lower limb joints and better control in rear foot eversion. Physical fatigue increased peak moments and powers in lower limb joints irrespective of the type of footwear.}, language = {en} }