@phdthesis{Prinz2016, author = {Prinz, Julia}, title = {DNA origami substrates as a versatile tool for surface-enhanced Raman scattering (SERS)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-104089}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 184 Seiten}, year = {2016}, abstract = {Surface-enhanced Raman scattering (SERS) is a promising tool to obtain rich chemical information about analytes at trace levels. However, in order to perform selective experiments on individual molecules, two fundamental requirements have to be fulfilled. On the one hand, areas with high local field enhancement, so-called "hot spots", have to be created by positioning the supporting metal surfaces in close proximity to each other. In most cases hot spots are formed in the gap between adjacent metal nanoparticles (NPs). On the other hand, the analyte has to be positioned directly in the hot spot in order to profit from the highest signal amplification. The use of DNA origami substrates provides both, the arrangement of AuNPs with nm precision as well as the ability to bind analyte molecules at predefined positions. Consequently, the present cumulative doctoral thesis aims at the development of a novel SERS substrate based on a DNA origami template. To this end, two DNA-functionalized gold nanoparticles (AuNPs) are attached to one DNA origami substrate resulting in the formation of a AuNP dimer and thus in a hot spot within the corresponding gap. The obtained structures are characterized by correlated atomic force microscopy (AFM) and SERS imaging which allows for the combination of structural and chemical information. Initially, the proof-of principle is presented which demonstrates the potential of the novel approach. It is shown that the Raman signal of 15 nm AuNPs coated with dye-modified DNA (dye: carboxytetramethylrhodamine (TAMRA)) is significantly higher for AuNP dimers arranged on a DNA origami platform in comparison to single AuNPs. Furthermore, by attaching single TAMRA molecules in the hot spot between two 5 nm AuNPs and optimizing the size of the AuNPs by electroless gold deposition, SERS experiments at the few-molecule level are presented. The initially used DNA origami-AuNPs design is further optimized in many respects. On the one hand, larger AuNPs up to a diameter of 60 nm are used which are additionally treated with a silver enhancement solution to obtain Au-Ag-core-shell NPs. On the other hand, the arrangement of both AuNPs is altered to improve the position of the dye molecule within the hot spot as well as to decrease the gap size between the two particles. With the optimized design the detection of single dye molecules (TAMRA and cyanine 3 (Cy3)) by means of SERS is demonstrated. Quantitatively, enhancement factors up to 10^10 are estimated which is sufficiently high to detect single dye molecules. In the second part, the influence of graphene as an additional component of the SERS substrate is investigated. Graphene is a two-dimensional material with an outstanding combination of electronical, mechanical and optical properties. Here, it is demonstrated that single layer graphene (SLG) replicates the shape of underlying non-modified DNA origami substrates very well, which enables the monitoring of structural alterations by AFM imaging. In this way, it is shown that graphene encapsulation significantly increases the structural stability of bare DNA origami substrates towards mechanical force and prolonged exposure to deionized water. Furthermore, SLG is used to cover DNA origami substrates which are functionalized with a 40 nm AuNP dimer. In this way, a novel kind of hybrid material is created which exhibits several advantages compared to the analogue non-covered SERS substrates. First, the fluorescence background of dye molecules that are located in between the AuNP surface and SLG is efficiently reduced. Second, the photobleaching rate of the incorporated dye molecules is decreased up to one order of magnitude. Third, due to the increased photostability of the investigated dye molecules, the performance of polarization-dependent series measurements on individual structures is enabled. This in turn reveals extensive information about the dye molecules in the hot spot as well as about the strain induced within the graphene lattice. Although SLG can significantly influence the SERS substrate in the aforementioned ways, all those effects are strongly related to the extent of contact with the underlying AuNP dimer.}, language = {en} } @article{KogikoskiJuniorTapioEdlervonZanderetal.2021, author = {Kogikoski Junior, Sergio and Tapio, Kosti and Edler von Zander, Robert and Saalfrank, Peter and Bald, Ilko}, title = {Raman enhancement of nanoparticle dimers self-assembled using DNA origami nanotriangles}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, volume = {26}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26061684}, pages = {18}, year = {2021}, abstract = {Surface-enhanced Raman scattering is a powerful approach to detect molecules at very low concentrations, even up to the single-molecule level. One important aspect of the materials used in such a technique is how much the signal is intensified, quantified by the enhancement factor (EF). Herein we obtained the EFs for gold nanoparticle dimers of 60 and 80 nm diameter, respectively, self-assembled using DNA origami nanotriangles. Cy5 and TAMRA were used as surface-enhanced Raman scattering (SERS) probes, which enable the observation of individual nanoparticles and dimers. EF distributions are determined at four distinct wavelengths based on the measurements of around 1000 individual dimer structures. The obtained results show that the EFs for the dimeric assemblies follow a log-normal distribution and are in the range of 10(6) at 633 nm and that the contribution of the molecular resonance effect to the EF is around 2, also showing that the plasmonic resonance is the main source of the observed signal. To support our studies, FDTD simulations of the nanoparticle's electromagnetic field enhancement has been carried out, as well as calculations of the resonance Raman spectra of the dyes using DFT. We observe a very close agreement between the experimental EF distribution and the simulated values.}, language = {en} }