@book{SchwarzerWeissSaoumiKitteletal.2023, author = {Schwarzer, Ingo and Weiß-Saoumi, Said and Kittel, Roland and Friedrich, Tobias and Kaynak, Koraltan and Durak, Cemil and Isbarn, Andreas and Diestel, J{\"o}rg and Knittel, Jens and Franz, Marquart and Morra, Carlos and Stahnke, Susanne and Braband, Jens and Dittmann, Johannes and Griebel, Stephan and Krampf, Andreas and Link, Martin and M{\"u}ller, Matthias and Radestock, Jens and Strub, Leo and Bleeke, Kai and Jehl, Leander and Kapitza, R{\"u}diger and Messadi, Ines and Schmidt, Stefan and Schwarz-R{\"u}sch, Signe and Pirl, Lukas and Schmid, Robert and Friedenberger, Dirk and Beilharz, Jossekin Jakob and Boockmeyer, Arne and Polze, Andreas and R{\"o}hrig, Ralf and Sch{\"a}be, Hendrik and Thiermann, Ricky}, title = {RailChain}, number = {152}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-550-7}, issn = {1613-5652}, doi = {10.25932/publishup-57740}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577409}, publisher = {Universit{\"a}t Potsdam}, pages = {140}, year = {2023}, abstract = {The RailChain project designed, implemented, and experimentally evaluated a juridical recorder that is based on a distributed consensus protocol. That juridical blockchain recorder has been realized as distributed ledger on board the advanced TrainLab (ICE-TD 605 017) of Deutsche Bahn. For the project, a consortium consisting of DB Systel, Siemens, Siemens Mobility, the Hasso Plattner Institute for Digital Engineering, Technische Universit{\"a}t Braunschweig, T{\"U}V Rheinland InterTraffic, and Spherity has been formed. These partners not only concentrated competencies in railway operation, computer science, regulation, and approval, but also combined experiences from industry, research from academia, and enthusiasm from startups. Distributed ledger technologies (DLTs) define distributed databases and express a digital protocol for transactions between business partners without the need for a trusted intermediary. The implementation of a blockchain with real-time requirements for the local network of a railway system (e.g., interlocking or train) allows to log data in the distributed system verifiably in real-time. For this, railway-specific assumptions can be leveraged to make modifications to standard blockchains protocols. EULYNX and OCORA (Open CCS On-board Reference Architecture) are parts of a future European reference architecture for control command and signalling (CCS, Reference CCS Architecture - RCA). Both architectural concepts outline heterogeneous IT systems with components from multiple manufacturers. Such systems introduce novel challenges for the approved and safety-relevant CCS of railways which were considered neither for road-side nor for on-board systems so far. Logging implementations, such as the common juridical recorder on vehicles, can no longer be realized as a central component of a single manufacturer. All centralized approaches are in question. The research project RailChain is funded by the mFUND program and gives practical evidence that distributed consensus protocols are a proper means to immutably (for legal purposes) store state information of many system components from multiple manufacturers. The results of RailChain have been published, prototypically implemented, and experimentally evaluated in large-scale field tests on the advanced TrainLab. At the same time, the project showed how RailChain can be integrated into the road-side and on-board architecture given by OCORA and EULYNX. Logged data can now be analysed sooner and also their trustworthiness is being increased. This enables, e.g., auditable predictive maintenance, because it is ensured that data is authentic and unmodified at any point in time.}, language = {en} } @article{KreowskyStabernack2021, author = {Kreowsky, Philipp and Stabernack, Christian Benno}, title = {A full-featured FPGA-based pipelined architecture for SIFT extraction}, series = {IEEE access : practical research, open solutions / Institute of Electrical and Electronics Engineers}, volume = {9}, journal = {IEEE access : practical research, open solutions / Institute of Electrical and Electronics Engineers}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {New York, NY}, issn = {2169-3536}, doi = {10.1109/ACCESS.2021.3104387}, pages = {128564 -- 128573}, year = {2021}, abstract = {Image feature detection is a key task in computer vision. Scale Invariant Feature Transform (SIFT) is a prevalent and well known algorithm for robust feature detection. However, it is computationally demanding and software implementations are not applicable for real-time performance. In this paper, a versatile and pipelined hardware implementation is proposed, that is capable of computing keypoints and rotation invariant descriptors on-chip. All computations are performed in single precision floating-point format which makes it possible to implement the original algorithm with little alteration. Various rotation resolutions and filter kernel sizes are supported for images of any resolution up to ultra-high definition. For full high definition images, 84 fps can be processed. Ultra high definition images can be processed at 21 fps.}, language = {en} } @unpublished{GrapentinHeidlerKorschetal.2014, author = {Grapentin, Andreas and Heidler, Kirstin and Korsch, Dimitri and Kumar Sah, Rakesh and Kunzmann, Nicco and Henning, Johannes and Mattis, Toni and Rein, Patrick and Seckler, Eric and Groneberg, Bj{\"o}rn and Zimmermann, Florian}, title = {Embedded operating system projects}, number = {90}, editor = {Hentschel, Uwe and Richter, Daniel and Polze, Andreas}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-296-4}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69154}, pages = {xi, 87}, year = {2014}, abstract = {In today's life, embedded systems are ubiquitous. But they differ from traditional desktop systems in many aspects - these include predictable timing behavior (real-time), the management of scarce resources (memory, network), reliable communication protocols, energy management, special purpose user-interfaces (headless operation), system configuration, programming languages (to support software/hardware co-design), and modeling techniques. Within this technical report, authors present results from the lecture "Operating Systems for Embedded Computing" that has been offered by the "Operating Systems and Middleware" group at HPI in Winter term 2013/14. Focus of the lecture and accompanying projects was on principles of real-time computing. Students had the chance to gather practical experience with a number of different OSes and applications and present experiences with near-hardware programming. Projects address the entire spectrum, from bare-metal programming to harnessing a real-time OS to exercising the full software/hardware co-design cycle. Three outstanding projects are at the heart of this technical report. Project 1 focuses on the development of a bare-metal operating system for LEGO Mindstorms EV3. While still a toy, it comes with a powerful ARM processor, 64 MB of main memory, standard interfaces, such as Bluetooth and network protocol stacks. EV3 runs a version of 1 1 Introduction Linux. Sources are available from Lego's web site. However, many devices and their driver software are proprietary and not well documented. Developing a new, bare-metal OS for the EV3 requires an understanding of the EV3 boot process. Since no standard input/output devices are available, initial debugging steps are tedious. After managing these initial steps, the project was able to adapt device drivers for a few Lego devices to an extent that a demonstrator (the Segway application) could be successfully run on the new OS. Project 2 looks at the EV3 from a different angle. The EV3 is running a pretty decent version of Linux- in principle, the RT_PREEMPT patch can turn any Linux system into a real-time OS by modifying the behavior of a number of synchronization constructs at the heart of the OS. Priority inversion is a problem that is solved by protocols such as priority inheritance or priority ceiling. Real-time OSes implement at least one of the protocols. The central idea of the project was the comparison of non-real-time and real-time variants of Linux on the EV3 hardware. A task set that showed effects of priority inversion on standard EV3 Linux would operate flawlessly on the Linux version with the RT_PREEMPT-patch applied. If only patching Lego's version of Linux was that easy... Project 3 takes the notion of real-time computing more seriously. The application scenario was centered around our Carrera Digital 132 racetrack. Obtaining position information from the track, controlling individual cars, detecting and modifying the Carrera Digital protocol required design and implementation of custom controller hardware. What to implement in hardware, firmware, and what to implement in application software - this was the central question addressed by the project.}, language = {en} }