@article{vanderMeijReimannVornehmetal.2019, author = {van der Meij, Marijn W. and Reimann, Tony and Vornehm, V. K. and Temme, Arnaud J. A. M. and Wallinga, Jakob and van Beek, Roy and Sommer, Michael}, title = {Reconstructing rates and patterns of colluvial soil redistribution in agrarian (hummocky) landscapes}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {44}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.4671}, pages = {2408 -- 2422}, year = {2019}, abstract = {Humans have triggered or accelerated erosion processes since prehistoric times through agricultural practices. Optically stimulated luminescence (OSL) is widely used to quantify phases and rates of the corresponding landscape change, by measuring the last moment of daylight exposure of sediments. However, natural and anthropogenic mixing processes, such as bioturbation and tillage, complicate the use of OSL as grains of different depositional ages become mixed, and grains become exposed to light even long after the depositional event of interest. Instead, OSL determines the stabilization age, indicating when sediments were buried below the active mixing zone. These stabilization ages can cause systematic underestimation when calculating deposition rates. Our focus is on colluvial deposition in a kettle hole in the Uckermark region, northeastern Germany. We took 32 samples from five locations in the colluvium filling the kettle hole to study both spatial and temporal patterns in colluviation. We combined OSL dating with advanced age modelling to determine the stabilization age of colluvial sediments. These ages were combined with an archaeological reconstruction of historical ploughing depths to derive the levels of the soil surface at the moment of stabilization; the deposition depths, which were then used to calculate unbiased deposition rates. We identified two phases of colluvial deposition. The oldest deposits (similar to 5 ka) were located at the fringe of the kettle hole and accumulated relatively slowly, whereas the youngest deposits (<0.3 ka) rapidly filled the central kettle hole with rates of two orders of magnitude higher. We suggest that the latter phase is related to artificial drainage, facilitating accessibility in the central depression for agricultural practices. Our results show the need for numerical dating techniques that take archaeological and soil-geomorphological information into account to identify spatiotemporal patterns of landscape change, and to correctly interpret landscape dynamics in anthropogenically influenced hilly landscapes. (c) 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley \& Sons Ltd.}, language = {en} } @phdthesis{TorresAcosta2015, author = {Torres Acosta, Ver{\´o}nica}, title = {Denudation processes in a tectonically active rift on different time scales}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84534}, school = {Universit{\"a}t Potsdam}, pages = {xv, ix, 183}, year = {2015}, abstract = {Continental rifts are excellent regions where the interplay between extension, the build-up of topography, erosion and sedimentation can be evaluated in the context of landscape evolution. Rift basins also constitute important archives that potentially record the evolution and migration of species and the change of sedimentary conditions as a result of climatic change. Finally, rifts have increasingly become targets of resource exploration, such as hydrocarbons or geothermal systems. The study of extensional processes and the factors that further modify the mainly climate-driven surface process regime helps to identify changes in past and present tectonic and geomorphic processes that are ultimately recorded in rift landscapes. The Cenozoic East African Rift System (EARS) is an exemplary continental rift system and ideal natural laboratory to observe such interactions. The eastern and western branches of the EARS constitute first-order tectonic and topographic features in East Africa, which exert a profound influence on the evolution of topography, the distribution and amount of rainfall, and thus the efficiency of surface processes. The Kenya Rift is an integral part of the eastern branch of the EARS and is characterized by high-relief rift escarpments bounded by normal faults, gently tilted rift shoulders, and volcanic centers along the rift axis. Considering the Cenozoic tectonic processes in the Kenya Rift, the tectonically controlled cooling history of rift shoulders, the subsidence history of rift basins, and the sedimentation along and across the rift, may help to elucidate the morphotectonic evolution of this extensional province. While tectonic forcing of surface processes may play a minor role in the low-strain rift on centennial to millennial timescales, it may be hypothesized that erosion and sedimentation processes impacted by climate shifts associated with pronounced changes in the availability in moisture may have left important imprints in the landscape. In this thesis I combined thermochronological, geomorphic field observations, and morphometry of digital elevation models to reconstruct exhumation processes and erosion rates, as well as the effects of climate on the erosion processes in different sectors of the rift. I present three sets of results: (1) new thermochronological data from the northern and central parts of the rift to quantitatively constrain the Tertiary exhumation and thermal evolution of the Kenya Rift. (2) 10Be-derived catchment-wide mean denudation rates from the northern, central and southern rift that characterize erosional processes on millennial to present-day timescales; and (3) paleo-denudation rates in the northern rift to constrain climatically controlled shifts in paleoenvironmental conditions during the early Holocene (African Humid Period). Taken together, my studies show that time-temperature histories derived from apatite fission track (AFT) analysis, zircon (U-Th)/He dating, and thermal modeling bracket the onset of rifting in the Kenya Rift between 65-50 Ma and about 15 Ma to the present. These two episodes are marked by rapid exhumation and, uplift of the rift shoulders. Between 45 and 15 Ma the margins of the rift experienced very slow erosion/exhumation, with the accommodation of sediments in the rift basin. In addition, I determined that present-day denudation rates in sparsely vegetated parts of the Kenya Rift amount to 0.13 mm/yr, whereas denudation rates in humid and more densely vegetated sectors of the rift flanks reach a maximum of 0.08 mm/yr, despite steeper hillslopes. I inferred that hillslope gradient and vegetation cover control most of the variation in denudation rates across the Kenya Rift today. Importantly, my results support the notion that vegetation cover plays a fundamental role in determining the voracity of erosion of hillslopes through its stabilizing effects on the land surface. Finally, in a pilot study I highlighted how paleo-denudation rates in climatic threshold areas changed significantly during times of transient hydrologic conditions and involved a sixfold increase in erosion rates during increased humidity. This assessment is based on cosmogenic nuclide (10Be) dating of quartzitic deltaic sands that were deposited in the northern Kenya Rift during a highstand of Lake Suguta, which was associated with the Holocene African Humid Period. Taken together, my new results document the role of climate variability in erosion processes that impact climatic threshold environments, which may provide a template for potential future impacts of climate-driven changes in surface processes in the course of Global Change.}, language = {en} } @article{ThompsonBurbankLietal.2015, author = {Thompson, Jessica A. and Burbank, Douglas W. and Li, Tao and Chen, Jie and Bookhagen, Bodo}, title = {Late Miocene northward propagation of the northeast Pamir thrust system, northwest China}, series = {Tectonics}, volume = {34}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2014TC003690}, pages = {510 -- 534}, year = {2015}, abstract = {Piggyback basins on the margins of growing orogens commonly serve as sensitive recorders of the onset of thrust deformation and changes in source areas. The Bieertuokuoyi piggyback basin, located in the hanging wall of the Pamir Frontal Thrust, provides an unambiguous record of the outward growth of the northeast Pamir margin in northwest China from the Miocene through the Quaternary. To reconstruct the deformation along the margin, we synthesized structural mapping, stratigraphy, magnetostratigraphy, and cosmogenic burial dating of basin fill and growth strata. The Bieertuokuoyi basin records the initiation of the Pamir Frontal Thrust and the Takegai Thrust similar to 5-6Ma, as well as clast provenance and paleocurrent changes resulting from the Pliocene-to-Recent uplift and exhumation of the Pamir to the south. Our results show that coeval deformation was accommodated on the major structures on the northeast Pamir margin throughout the Miocene to Recent. Furthermore, our data support a change in the regional kinematics around the Miocene-Pliocene boundary (similar to 5-6Ma). Rapid exhumation of NE Pamir extensional domes, coupled with cessation of the Kashgar-Yecheng Transfer System on the eastern margin of the Pamir, accelerated the outward propagation of the northeastern Pamir margin and the southward propagation of the Kashi-Atushi fold-and-thrust belt in the southern Tian Shan. This coeval deformation signifies the coupling of the Pamir and Tarim blocks and the transfer of shortening north to the Pamir frontal faults and across the quasi-rigid Tarim Basin to the southern Tian Shan Kashi-Atushi fold-and-thrust system.}, language = {en} } @article{SchildgenHoke2018, author = {Schildgen, Taylor F. and Hoke, Gregory D.}, title = {The topographic evolution of the central andes}, series = {Elements : an international magazine of mineralogy, geochemistry, and petrology}, volume = {14}, journal = {Elements : an international magazine of mineralogy, geochemistry, and petrology}, number = {4}, publisher = {Mineralogical Society of America}, address = {Chantilly}, issn = {1811-5209}, doi = {10.2138/gselements.14.4.231}, pages = {231 -- 236}, year = {2018}, abstract = {Changes in topography on Earth, particularly the growth of major mountain belts like the Central Andes, have a fundamental impact on regional and global atmospheric circulation patterns. These patterns, in turn, affect processes such as precipitation, erosion, and sedimentation. Over the last two decades, various geochemical, geomorphologic, and geologic approaches have helped identify when, where, and how quickly topography has risen in the past. The current spatio-temporal picture of Central Andean growth is now providing insight into which deep-Earth processes have left their imprint on the shape of the Earth's surface.}, language = {en} } @article{ScherlerSchwanghart2020, author = {Scherler, Dirk and Schwanghart, Wolfgang}, title = {Drainage divide networks}, series = {Earth surface dynamics}, volume = {8}, journal = {Earth surface dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-8-261-2020}, pages = {261 -- 274}, year = {2020}, abstract = {Drainage divides are organized into tree-like networks that may record information about drainage divide mobility. However, views diverge about how to best assess divide mobility. Here, we apply a new approach of automatically extracting and ordering drainage divide networks from digital elevation models to results from landscape evolution model experiments. We compared landscapes perturbed by strike-slip faulting and spatiotemporal variations in erodibility to a reference model to assess which topographic metrics (hillslope relief, flow distance, and chi) are diagnostic of divide mobility. Results show that divide segments that are a minimum distance of similar to 5 km from river confluences strive to attain constant values of hillslope relief and flow distance to the nearest stream. Disruptions of such patterns can be related to mobile divides that are lower than stable divides, closer to streams, and often asymmetric in shape. In general, we observe that drainage divides high up in the network, i.e., at great distances from river confluences, are more susceptible to disruptions than divides closer to these confluences and are thus more likely to record disturbance for a longer time period. We found that across-divide differences in hillslope relief proved more useful for assessing divide migration than other tested metrics. However, even stable drainage divide networks exhibit across-divide differences in any of the studied topographic metrics. Finally, we propose a new metric to quantify the connectivity of divide junctions.}, language = {en} } @article{ScherlerBookhagenWulfetal.2015, author = {Scherler, Dirk and Bookhagen, Bodo and Wulf, Hendrik and Preusser, Frank and Strecker, Manfred}, title = {Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India}, series = {Earth \& planetary science letters}, volume = {428}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2015.06.034}, pages = {255 -- 266}, year = {2015}, abstract = {The response of surface processes to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Himalaya, most large rivers feature prominent fill terraces that record an imbalance between sediment supply and transport capacity, presumably due to past fluctuations in monsoon precipitation and/or effects of glaciation at high elevation. Here, we present volume estimates, chronological constraints, and Be-10-derived paleo-erosion rates from a prominent valley fill in the Yamuna catchment, Garhwal Himalaya, to elucidate the coupled response of rivers and hillslopes to Pleistocene climate change. Although precise age control is complicated due to methodological problems, the new data support formation of the valley fill during the late Pleistocene and its incision during the Holocene. We interpret this timing to indicate that changes in discharge and river-transport capacity were major controls. Compared to the present day, late Pleistocene hillslope erosion rates were higher by a factor of similar to 2-4, but appear to have decreased during valley aggradation. The higher late Pleistocene erosion rates are largely unrelated to glacial erosion and could be explained by enhanced sediment production on steep hillslopes due to increased periglacial activity that declined as temperatures increased. Alternatively, erosion rates that decrease during valley aggradation are also consistent with reduced landsliding from threshold hillslopes as a result of rising base levels. In that case, the similarity of paleo-erosion rates near the end of the aggradation period with modern erosion rates might imply that channels and hillslopes are not yet fully coupled everywhere and that present-day hillslope erosion rates may underrepresent long-term incision rates. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @misc{MuddClubbGailletonetal.2018, author = {Mudd, Simon M. and Clubb, Fiona J. and Gailleton, Boris and Hurst, Martin D.}, title = {How concave are river channels?}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {718}, issn = {1866-8372}, doi = {10.25932/publishup-42699}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426998}, pages = {19}, year = {2018}, abstract = {For over a century, geomorphologists have attempted to unravel information about landscape evolution, and processes that drive it, using river profiles. Many studies have combined new topographic datasets with theoretical models of channel incision to infer erosion rates, identify rock types with different resistance to erosion, and detect potential regions of tectonic activity. The most common metric used to analyse river profile geometry is channel steepness, or k(s). However, the calculation of channel steepness requires the normalisation of channel gradient by drainage area. This normalisation requires a power law exponent that is referred to as the channel concavity index. Despite the concavity index being crucial in determining channel steepness, it is challenging to constrain. In this contribution, we compare both slope-area methods for calculating the concavity index and methods based on integrating drainage area along the length of the channel, using so-called "chi" (chi) analysis. We present a new chi-based method which directly compares chi values of tributary nodes to those on the main stem; this method allows us to constrain the concavity index in transient landscapes without assuming a linear relationship between chi and elevation. Patterns of the concavity index have been linked to the ratio of the area and slope exponents of the stream power incision model (m/n); we therefore construct simple numerical models obeying detachment-limited stream power and test the different methods against simulations with imposed m and n. We find that chi-based methods are better than slope-area methods at reproducing imposed m/n ratios when our numerical landscapes are subject to either transient uplift or spatially varying uplift and fluvial erodibility. We also test our methods on several real landscapes, including sites with both lithological and structural heterogeneity, to provide examples of the methods' performance and limitations. These methods are made available in a new software package so that other workers can explore how the concavity index varies across diverse landscapes, with the aim to improve our understanding of the physics behind bedrock channel incision.}, language = {en} } @phdthesis{Mey2016, author = {Mey, J{\"u}rgen}, title = {Intermontane valley fills}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103158}, school = {Universit{\"a}t Potsdam}, pages = {xii, 111}, year = {2016}, abstract = {Sedimentary valley fills are a widespread characteristic of mountain belts around the world. They transiently store material over time spans ranging from thousands to millions of years and therefore play an important role in modulating the sediment flux from the orogen to the foreland and to oceanic depocenters. In most cases, their formation can be attributed to specific fluvial conditions, which are closely related to climatic and tectonic processes. Hence, valley-fill deposits constitute valuable archives that offer fundamental insight into landscape evolution, and their study may help to assess the impact of future climate change on sediment dynamics. In this thesis I analyzed intermontane valley-fill deposits to constrain different aspects of the climatic and tectonic history of mountain belts over multiple timescales. First, I developed a method to estimate the thickness distribution of valley fills using artificial neural networks (ANNs). Based on the assumption of geometrical similarity between exposed and buried parts of the landscape, this novel and highly automated technique allows reconstructing fill thickness and bedrock topography on the scale of catchments to entire mountain belts. Second, I used the new method for estimating the spatial distribution of post-glacial sediments that are stored in the entire European Alps. A comparison with data from exploratory drillings and from geophysical surveys revealed that the model reproduces the measurements with a root mean squared error (RMSE) of 70m and a coefficient of determination (R2) of 0.81. I used the derived sediment thickness estimates in combination with a model of the Last Glacial Maximum (LGM) icecap to infer the lithospheric response to deglaciation, erosion and deposition, and deduce their relative contribution to the present-day rock-uplift rate. For a range of different lithospheric and upper mantle-material properties, the results suggest that the long-wavelength uplift signal can be explained by glacial isostatic adjustment with a small erosional contribution and a substantial but localized tectonic component exceeding 50\% in parts of the Eastern Alps and in the Swiss Rh{\^o}ne Valley. Furthermore, this study reveals the particular importance of deconvolving the potential components of rock uplift when interpreting recent movements along active orogens and how this can be used to constrain physical properties of the Earth's interior. In a third study, I used the ANN approach to estimate the sediment thickness of alluviated reaches of the Yarlung Tsangpo River, upstream of the rapidly uplifting Namche Barwa massif. This allowed my colleagues and me to reconstruct the ancient river profile of the Yarlung Tsangpo, and to show that in the past, the river had already been deeply incised into the eastern margin of the Tibetan Plateau. Dating of basal sediments from drill cores that reached the paleo-river bed to 2-2.5 Ma are consistent with mineral cooling ages from the Namche Barwa massif, which indicate initiation of rapid uplift at ~4 Ma. Hence, formation of the Tsangpo gorge and aggradation of the voluminous valley fill was most probably a consequence of rapid uplift of the Namche Barwa massif and thus tectonic activity. The fourth and last study focuses on the interaction of fluvial and glacial processes at the southeastern edge of the Karakoram. Paleo-ice-extent indicators and remnants of a more than 400-m-thick fluvio-lacustrine valley fill point to blockage of the Shyok River, a main tributary of the upper Indus, by the Siachen Glacier, which is the largest glacier in the Karakoram Range. Field observations and 10Be exposure dating attest to a period of recurring lake formation and outburst flooding during the penultimate glaciation prior to ~110 ka. The interaction of Rivers and Glaciers all along the Karakorum is considered a key factor in landscape evolution and presumably promoted headward erosion of the Indus-Shyok drainage system into the western margin of the Tibetan Plateau. The results of this thesis highlight the strong influence of glaciation and tectonics on valley-fill formation and how this has affected the evolution of different mountain belts. In the Alps valley-fill deposition influenced the magnitude and pattern of rock uplift since ice retreat approximately 17,000 years ago. Conversely, the analyzed valley fills in the Himalaya are much older and reflect environmental conditions that prevailed at ~110 ka and ~2.5 Ma, respectively. Thus, the newly developed method has proven useful for inferring the role of sedimentary valley-fill deposits in landscape evolution on timescales ranging from 1,000 to 10,000,000 years.}, language = {en} } @article{LandgrafZielkeArrowsmithetal.2013, author = {Landgraf, Angela and Zielke, Olaf and Arrowsmith, J. Ram{\´o}n and Ballato, Paolo and Strecker, Manfred and Schildgen, Taylor F. and Friedrich, Anke M. and Tabatabaei, Sayyed-Hassan}, title = {Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran}, series = {Journal of geophysical research : Earth surface}, volume = {118}, journal = {Journal of geophysical research : Earth surface}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/jgrf.20109}, pages = {1792 -- 1805}, year = {2013}, abstract = {The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a simple to a composite state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.}, language = {en} } @phdthesis{Hartmann2024, author = {Hartmann, Anne}, title = {Tracing the evolution of hillslope structure and hillslope hydrological response over ten millennia in two glacial forefields of different geology}, doi = {10.25932/publishup-62862}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-628629}, school = {Universit{\"a}t Potsdam}, pages = {XVIII, 138, XLIV}, year = {2024}, abstract = {Assessing the impact of global change on hydrological systems is one of the greatest hydrological challenges of our time. Changes in land cover, land use, and climate have an impact on water quantity, quality, and temporal availability. There is a widespread consensus that, given the far-reaching effects of global change, hydrological systems can no longer be viewed as static in their structure; instead, they must be regarded as entire ecosystems, wherein hydrological processes interact and coevolve with biological, geomorphological, and pedological processes. To accurately predict the hydrological response under the impact of global change, it is essential to understand this complex coevolution. The knowledge of how hydrological processes, in particular the formation of subsurface (preferential) flow paths, evolve within this coevolution and how they feed back to the other processes is still very limited due to a lack of observational data. At the hillslope scale, this intertwined system of interactions is known as the hillslope feedback cycle. This thesis aims to enhance our understanding of the hillslope feedback cycle by studying the coevolution of hillslope structure and hillslope hydrological response. Using chronosequences of moraines in two glacial forefields developed from siliceous and calcareous glacial till, the four studies shed light on the complex coevolution of hydrological, biological, and structural hillslope properties, as well as subsurface hydrological flow paths over an evolutionary period of 10 millennia in these two contrasting geologies. The findings indicate that the contrasting properties of siliceous and calcareous parent materials lead to variations in soil structure, permeability, and water storage. As a result, different plant species and vegetation types are favored on siliceous versus calcareous parent material, leading to diverse ecosystems with distinct hydrological dynamics. The siliceous parent material was found to show a higher activity level in driving the coevolution. The soil pH resulting from parent material weathering emerges as a crucial factor, influencing vegetation development, soil formation, and consequently, hydrology. The acidic weathering of the siliceous parent material favored the accumulation of organic matter, increasing the soils' water storage capacity and attracting acid-loving shrubs, which further promoted organic matter accumulation and ultimately led to podsolization after 10 000 years. Tracer experiments revealed that the subsurface flow path evolution was influenced by soil and vegetation development, and vice versa. Subsurface flow paths changed from vertical, heterogeneous matrix flow to finger-like flow paths over a few hundred years, evolving into macropore flow, water storage, and lateral subsurface flow after several thousand years. The changes in flow paths among younger age classes were driven by weathering processes altering soil structure, as well as by vegetation development and root activity. In the older age class, the transition to more water storage and lateral flow was attributed to substantial organic matter accumulation and ongoing podsolization. The rapid vertical water transport in the finger-like flow paths, along with the conductive sandy material, contributed to podsolization and thus to the shift in the hillslope hydrological response. In contrast, the calcareous site possesses a high pH buffering capacity, creating a neutral to basic environment with relatively low accumulation of dead organic matter, resulting in a lower water storage capacity and the establishment of predominantly grass vegetation. The coevolution was found to be less dynamic over the millennia. Similar to the siliceous site, significant changes in subsurface flow paths occurred between the young age classes. However, unlike the siliceous site, the subsurface flow paths at the calcareous site only altered in shape and not in direction. Tracer experiments showed that flow paths changed from vertical, heterogeneous matrix flow to vertical, finger-like flow paths after a few hundred to thousands of years, which was driven by root activities and weathering processes. Despite having a finer soil texture, water storage at the calcareous site was significantly lower than at the siliceous site, and water transport remained primarily rapid and vertical, contributing to the flourishing of grass vegetation. The studies elucidated that changes in flow paths are predominantly shaped by the characteristics of the parent material and its weathering products, along with their complex interactions with initial water flow paths and vegetation development. Time, on the other hand, was not found to be a primary factor in describing the evolution of the hydrological response. This thesis makes a valuable contribution to closing the gap in the observations of the coevolution of hydrological processes within the hillslope feedback cycle, which is important to improve predictions of hydrological processes in changing landscapes. Furthermore, it emphasizes the importance of interdisciplinary studies in addressing the hydrological challenges arising from global change.}, language = {en} }