@phdthesis{Šustr2020, author = {Šustr, David}, title = {Molecular diffusion in polyelectrolyte multilayers}, doi = {10.25932/publishup-48903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489038}, school = {Universit{\"a}t Potsdam}, pages = {106}, year = {2020}, abstract = {Research on novel and advanced biomaterials is an indispensable step towards their applications in desirable fields such as tissue engineering, regenerative medicine, cell culture, or biotechnology. The work presented here focuses on such a promising material: polyelectrolyte multilayer (PEM) composed of hyaluronic acid (HA) and poly(L-lysine) (PLL). This gel-like polymer surface coating is able to accumulate (bio-)molecules such as proteins or drugs and release them in a controlled manner. It serves as a mimic of the extracellular matrix (ECM) in composition and intrinsic properties. These qualities make the HA/PLL multilayers a promising candidate for multiple bio-applications such as those mentioned above. The work presented aims at the development of a straightforward approach for assessment of multi-fractional diffusion in multilayers (first part) and at control of local molecular transport into or from the multilayers by laser light trigger (second part). The mechanism of the loading and release is governed by the interaction of bioactives with the multilayer constituents and by the diffusion phenomenon overall. The diffusion of a molecule in HA/PLL multilayers shows multiple fractions of different diffusion rate. Approaches, that are able to assess the mobility of molecules in such a complex system, are limited. This shortcoming motivated the design of a novel evaluation tool presented here. The tool employs a simulation-based approach for evaluation of the data acquired by fluorescence recovery after photobleaching (FRAP) method. In this approach, possible fluorescence recovery scenarios are primarily simulated and afterwards compared with the data acquired while optimizing parameters of a model until a sufficient match is achieved. Fluorescent latex particles of different sizes and fluorescein in an aqueous medium are utilized as test samples validating the analysis results. The diffusion of protein cytochrome c in HA/PLL multilayers is evaluated as well. This tool significantly broadens the possibilities of analysis of spatiotemporal FRAP data, which originate from multi-fractional diffusion, while striving to be widely applicable. This tool has the potential to elucidate the mechanisms of molecular transport and empower rational engineering of the drug release systems. The second part of the work focuses on the fabrication of such a spatiotemporarily-controlled drug release system employing the HA/PLL multilayer. This release system comprises different layers of various functionalities that together form a sandwich structure. The bottom layer, which serves as a reservoir, is formed by HA/PLL PEM deposited on a planar glass substrate. On top of the PEM, a layer of so-called hybrids is deposited. The hybrids consist of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) -based hydrogel microparticles with surface-attached gold nanorods. The layer of hybrids is intended to serve as a gate that controls the local molecular transport through the PEM-solution-interface. The possibility of stimulating the molecular transport by near-infrared (NIR) laser irradiation is being explored. From several tested approaches for the deposition of hybrids onto the PEM surface, the drying-based approach was identified as optimal. Experiments, that examine the functionality of the fabricated sandwich at elevated temperature, document the reversible volume phase transition of the PEM-attached hybrids while sustaining the sandwich stability. Further, the gold nanorods were shown to effectively absorb light radiation in the tissue- and cell-friendly NIR spectral region while transducing the energy of light into heat. The rapid and reversible shrinkage of the PEM-attached hybrids was thereby achieved. Finally, dextran was employed as a model transport molecule. It loads into the PEM reservoir in a few seconds with the partition constant of 2.4, while it spontaneously releases in a slower, sustained manner. The local laser irradiation of the sandwich, which contains the fluorescein isothiocyanate tagged dextran, leads to a gradual reduction of fluorescence intensity in the irradiated region. The release system fabricated employs renowned photoresponsivity of the hybrids in an innovative setting. The results of the research are a step towards a spatially-controlled on-demand drug release system that paves the way to spatiotemporally controlled drug release. The approaches developed in this work have the potential to elucidate the molecular dynamics in ECM and to foster engineering of multilayers with properties tuned to mimic the ECM. The work aims at spatiotemporal control over the diffusion of bioactives and their presentation to the cells.}, language = {en} } @article{VelkUhligVikulinaetal.2016, author = {Velk, Natalia and Uhlig, Katja and Vikulina, Anna and Duschl, Claus and Volodkin, Dmitry}, title = {Mobility of lysozyme in poly(L-lysine)/hyaluronic acid multilayer films}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {147}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2016.07.055}, pages = {343 -- 350}, year = {2016}, abstract = {The spatial and temporal control over presentation of protein-based biomolecules such as growth factors and hormones is crucial for in vitro applications to mimic the complex in vivo environment. We investigated the interaction of a model protein lysozyme (Lys) with poly(L-lysine)/hyaluronic acid (PLL/HA) multilayer films. We focused on Lys diffusion as well as adsorption and retention within the film as a function of the film deposition conditions and post-treatment. Additionally, an effect of Lys concentration on its mobility was probed. A combination of confocal fluorescence microscopy, fluorescence recovery after photobleaching, and microfluidics was employed for this investigation. Our main finding is that adsorption of PLL and HA after protein loading induces acceleration and reduction of Lys mobility, respectively. These results suggest that a charge balance in the film to a high extent governs the protein-film interaction. We believe that control over protein mobility is a key to reach the full potential of the PLL/HA films as reservoirs for biomolecules depending on the application demand. (C) 2016 The Authors. Published by Elsevier B.V.}, language = {en} }