@misc{Petersen2017, type = {Master Thesis}, author = {Petersen, Gesa Maria}, title = {Source array and receiver array analysis of Vogtland/ West Bohemia earthquake clusters}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406671}, school = {Universit{\"a}t Potsdam}, pages = {107}, year = {2017}, abstract = {Die Region Vogtland/ West B{\"o}hmen im Grenzgebiet zwischen Deutschland und Tschechien ist bekannt f{\"u}r ihre geologische Aktivit{\"a}t. Holoz{\"a}ner Vulkanismus, Gasaustritte an Mofetten und Quellen und wiederkehrende Erdbebenschw{\"a}rme sind Ausdruck geodynamischer Prozesse im Untergrund. W{\"a}hrend des Erdbebenschwarms 2008/2009 in Nov{\´y} Kostel installierte die Universit{\"a}t Potsdam ein tempor{\"a}res Array in Rohrbach, in einer Epizentraldistanz von etwa 10 km und mit einer Aperatur von etwa 0.75 km. 22 Erdbeben wurden f{\"u}r Quellarray- beam forming ausgew{\"a}hlt. Quellarrays sind {\"o}rtliche Cluster von Erdbeben, die von einer Empf{\"a}ngerstation aufgezeichnet werden. Wegen der Reziprozit{\"a}t der Green'schen Funktionen k{\"o}nnen diese in {\"a}hnlicher Weise genutzt werden wie Empf{\"a}ngerarrays, bei denen mehrere Stationen ein einzelnes Beben aufzeichnen. Die Kreuzkorrelationskoeffizienten aller Beben des Quellarrays, aufgezeichnet an einer einzelnen Station, sind in der Regel h{\"o}her als f{\"u}r einzelne Ereignisse, die an allen Stationen des Empf{\"a}ngerarrays aufgezeichnet wurden. Dies deutet hinsichtlich der aufgel{\"o}sten Frequenzen auf einen heterogenen Untergrund unter den Array-Stationen und ein vergleichsweise homogenes Quellarray-Volumen hin. Beam forming wurde mit den horizontalen und vertikalen Spuren aller Quellarray-Beben, aufgezeichnet auf allen 11 Stationen des Empf{\"a}ngerarrays, durchgef{\"u}hrt. Die Ergebnisse wurden im Hinblick auf Konversionen und reflektierte Phasen analysiert. W{\"a}hrend die theoretische Richtung der direkten P-Welle im Falle der Quellarray-Aufzeichnungen gut {\"u}bereinstimmt, wird eine Empf{\"a}ngerarray-Missweisung von 15° bis 25° beobachtet. Eine PS Phase, die der direkten P Phase folgt und eine m{\"o}gliche SP Phase, die kurz vor der direkten S-Phase ankommt, wurden auf den summierten Spuren mehrerer Stationen interpretiert. Aus der Betrachtung der Laufzeiten resultiert eine Konversionstiefe von 0.6-0.9 km Tiefe. Ein zweites Quellarray, bestehend aus 12 tieferen Beben wurde zus{\"a}tzlich analysiert, um eine nach ca. 0.85 s ausschließlich auf den Aufzeichnungen tieferer Beben auftretende Strukturphase zu deuten. Zus{\"a}tzlich zum beam forming wurden zwei Lokalisierungsmethoden von Reflexionen und Konversionen f{\"u}r einfach reflektierte/konvertierte Phasen entwickelt und zur Auswertung verwendet. W{\"a}hrend die erste, analytische Methode eine homogene Geschwindigkeit entlang des Laufwegs annimmt, wird in der zweiten Methode eine 3-D-Rastersuche ausgef{\"u}hrt, in der ein 1-D-Geschwindigkeitsmodell verwendet wird. Auf Grund der eindeutigen beam forming Ergebnisse und der hohen {\"A}hnlichkeit der Wellenformen der Erdbeben, die f{\"u}r das Quellarray genutzt wurden, bieten Quellarrays bestehend aus Mikrobeben aus dem untersuchten Gebiet gute M{\"o}glichkeiten zur Untersuchung von Krustenstrukturen.}, language = {en} } @phdthesis{Kriegerowski2019, author = {Kriegerowski, Marius}, title = {Development of waveform-based, automatic analysis tools for the spatio-temporal characterization of massive earthquake clusters and swarms}, doi = {10.25932/publishup-44404}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444040}, school = {Universit{\"a}t Potsdam}, pages = {xv, 83}, year = {2019}, abstract = {Earthquake swarms are characterized by large numbers of events occurring in a short period of time within a confined source volume and without significant mainshock aftershock pattern as opposed to tectonic sequences. Intraplate swarms in the absence of active volcanism usually occur in continental rifts as for example in the Eger Rift zone in North West Bohemia, Czech Republic. A common hypothesis links event triggering to pressurized fluids. However, the exact causal chain is often poorly understood since the underlying geotectonic processes are slow compared to tectonic sequences. The high event rate during active periods challenges standard seismological routines as these are often designed for single events and therefore costly in terms of human resources when working with phase picks or computationally costly when exploiting full waveforms. This methodological thesis develops new approaches to analyze earthquake swarm seismicity as well as the underlying seismogenic volume. It focuses on the region of North West (NW) Bohemia, a well studied, well monitored earthquake swarm region. In this work I develop and test an innovative approach to detect and locate earthquakes using deep convolutional neural networks. This technology offers great potential as it allows to efficiently process large amounts of data which becomes increasingly important given that seismological data storage grows at increasing pace. The proposed deep neural network trained on NW Bohemian earthquake swarm records is able to locate 1000 events in less than 1 second using full waveforms while approaching precision of double difference relocated catalogs. A further technological novelty is that the trained filters of the deep neural network's first layer can be repurposed to function as a pattern matching event detector without additional training on noise datasets. For further methodological development and benchmarking, I present a new toolbox to generate realistic earthquake cluster catalogs as well as synthetic full waveforms of those clusters in an automated fashion. The input is parameterized using constraints on source volume geometry, nucleation and frequency-magnitude relations. It harnesses recorded noise to produce highly realistic synthetic data for benchmarking and development. This tool is used to study and assess detection performance in terms of magnitude of completeness Mc of a full waveform detector applied to synthetic data of a hydrofracturing experiment at the Wysin site, Poland. Finally, I present and demonstrate a novel approach to overcome the masking effects of wave propagation between earthquake and stations and to determine source volume attenuation directly in the source volume where clustered earthquakes occur. The new event couple spectral ratio approach exploits high frequency spectral slopes of two events sharing the greater part of their rays. Synthetic tests based on the toolbox mentioned before show that this method is able to infer seismic wave attenuation within the source volume at high spatial resolution. Furthermore, it is independent from the distance towards a station as well as the complexity of the attenuation and velocity structure outside of the source volume of swarms. The application to recordings of the NW Bohemian earthquake swarm shows increased P phase attenuation within the source volume (Qp < 100) based on results at a station located close to the village Luby (LBC). The recordings of a station located in epicentral proximity, close to Nov{\´y} Kostel (NKC), show a relatively high complexity indicating that waves arriving at that station experience more scattering than signals recorded at other stations. The high level of complexity destabilizes the inversion. Therefore, the Q estimate at NKC is not reliable and an independent proof of the high attenuation finding given the geometrical and frequency constraints is still to be done. However, a high attenuation in the source volume of NW Bohemian swarms has been postulated before in relation to an expected, highly damaged zone bearing CO 2 at high pressure. The methods developed in the course of this thesis yield the potential to improve our understanding regarding the role of fluids and gases in intraplate event clustering.}, language = {en} }