@article{KonradSchmolkeO'BrienZack2011, author = {Konrad-Schmolke, Matthias and O'Brien, Patrick J. and Zack, Thomas}, title = {Fluid Migration above a Subducted Slab-Constraints on Amount, Pathways and Major Element Mobility from Partially Overprinted Eclogite-facies Rocks (Sesia Zone, Western Alps)}, series = {Journal of petrology}, volume = {52}, journal = {Journal of petrology}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-3530}, doi = {10.1093/petrology/egq087}, pages = {457 -- 486}, year = {2011}, abstract = {The Western Alpine Sesia-Lanzo Zone (SLZ) is a sliver of eclogite-facies continental crust exhumed from mantle depths in the hanging wall of a subducted oceanic slab. Eclogite-facies felsic and basic rocks sampled across the internal SLZ show different degrees of retrograde metamorphic overprint associated with fluid influx. The weakly deformed samples preserve relict eclogite-facies mineral assemblages that show partial fluid-induced compositional re-equilibration along grain boundaries, brittle fractures and other fluid pathways. Multiple fluid influx stages are indicated by replacement of primary omphacite by phengite, albitic plagioclase and epidote as well as partial re-equilibration and/or overgrowths in phengite and sodic amphibole, producing characteristic step-like compositional zoning patterns. The observed textures, together with the map-scale distribution of the samples, suggest open-system, pervasive and reactive fluid flux across large rock volumes above the subducted slab. Thermodynamic modelling indicates a minimum amount of fluid of 0 center dot 1-0 center dot 5 wt \% interacting with the wall-rocks. Phase relations and reaction textures indicate mobility of K, Ca, Fe and Mg, whereas Al is relatively immobile in these medium-temperature-high-pressure fluids. Furthermore, the thermodynamic models show that recycling of previously fractionated material, such as in the cores of garnet porphyroblasts, largely controls the compositional re-equilibration of the exhumed rock body.}, language = {en} } @article{KotkovaO'BrienZiemann2011, author = {Kotkova, Jana and O'Brien, Patrick J. and Ziemann, Martin Andreas}, title = {Diamond and coesite discovered in Saxony-type granulite solution to the Variscan garnet peridotite enigma}, series = {Geology}, volume = {39}, journal = {Geology}, number = {7}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G31971.1}, pages = {667 -- 670}, year = {2011}, abstract = {The pressures required for diamond and coesite formation far exceed conditions reached by even the deepest present-day orogenic crustal roots. Therefore the occurrence of metamorphosed continental crust containing these minerals requires processes other than crustal thickening to have operated in the past. Here we report the first in situ finding of diamond and coesite, characterized by micro-Raman spectroscopy, in high-pressure granulites otherwise indistinguishable from granulites found associated with garnet peridotite throughout the European Variscides. Our discovery confirms the provenance of Europe's first reliable diamond, the "Bohemian diamond," found in A.D. 1870, and also represents the first robust evidence for ultrahigh-pressure conditions in a major Variscan crustal rock type. A process of deep continental subduction is required to explain the metamorphic pressures and the granulite-garnet peridotite association, and thus tectonometamorphic models for these rocks involving a deep orogenic crustal root need to be significantly modified.}, language = {en} } @article{SchmidtMezgerO'Brien2011, author = {Schmidt, Alexander and Mezger, Klaus and O'Brien, Patrick J.}, title = {The time of eclogite formation in the ultrahigh pressure rocks of the Sulu terrane Constraints from Lu-Hf garnet geochronology}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {125}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2011.04.004}, pages = {743 -- 756}, year = {2011}, abstract = {Eclogites from the main borehole of the Chinese Continental Scientific Drilling project yield highly precise Lu-Hf garnet-clinopyroxene ages of 216.9 +/- 1.2 Ma (four samples) and 220.5 +/- 2.7 Ma (one sample). The spatial distribution of the rare earth elements in garnet is consistent with the preservation of primary growth zoning, unmodified by diffusion, which supports the interpretation that the Lu-Hf ages date the time of formation of garnet, the major rock forming mineral in the eclogites. The preservation of primary REE-zoning, despite peak metamorphic temperatures around 800-850 degrees C. indicates that the Lu-Hf chronometer is perfectly suitable to date garnet-forming reactions in high grade rocks. The range of Lu-Hf ages for eclogites in the Dabie-Sulu UHP terrane point to episodic rather than continuous growth of garnets and thus punctuated metamorphism during the collision of the North China Block and the Yangtze Block. The U-Pb ages and Hf-isotope systematics of zircon grains from one eclogite sample imply a protracted geologic history of the eclogite precursors that started around 2 Ga and culminated in the UHP metamorphism around 220 Ma.}, language = {en} } @article{KonradSchmolkeZackO'Brienetal.2011, author = {Konrad-Schmolke, Matthias and Zack, Thomas and O'Brien, Patrick J. and Barth, Matthias}, title = {Fluid migration above a subducted slab - Thermodynamic and trace element modelling of fluid-rock interaction in partially overprinted eclogite-facies rocks (Sesia Zone, Western Alps)}, series = {Earth \& planetary science letters}, volume = {311}, journal = {Earth \& planetary science letters}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.09.025}, pages = {287 -- 298}, year = {2011}, abstract = {The amount and composition of subduction zone fluids and the effect of fluid-rock interaction at a slab-mantle interface have been constrained by thermodynamic and trace element modelling of partially overprinted blueschist-facies rocks from the Sesia Zone (Western Alps). Deformation-induced differences in fluid flux led to a partial preservation of pristine mineral cores in weakly deformed samples that were used to quantify Li, B, Stand Pb distribution during mineral growth, -breakdown and modification induced by fluid-rock interaction. Our results show that Li and 13 budgets are fluid-controlled, thus acting as tracers for fluid-rock interaction processes, whereas Stand Pb budgets are mainly controlled by the fluid-induced formation of epidote. Our calculations show that fluid-rock interaction caused significant Li and B depletion in the affected rocks due to leaching effects, which in turn can lead to a drastic enrichment of these elements in the percolating fluid. Depending on available fluid-mineral trace element distribution coefficients modelled fluid rock ratios were up to 0.06 in weakly deformed samples and at least 0.5 to 4 in shear zone mylonites. These amounts lead to time integrated fluid fluxes of up to 1.4-10(2) m(3) m(-2) in the weakly deformed rocks and 1-8-10(3) m(3) m(-2) in the mylonites. Combined thermodynamic and trace element models can be used to quantify metamorphic fluid fluxes and the associated element transfer in complex, reacting rock systems and help to better understand commonly observed fluid-induced trace element trends in rocks and minerals from different geodynamic environments.}, language = {en} }