@article{JuangSchachnerAraletal.2023, author = {Juang, Linda P. and Schachner, Maja and Aral, Tuğ{\c{c}}e and Schwarzenthal, Miriam and Kunyu, David Khisoni and L{\"o}hmannsr{\"o}ben, Hanna}, title = {Effects of a brief self-affirmation writing intervention among 7(th) graders in Germany}, series = {Social psychology of education : an international journal}, journal = {Social psychology of education : an international journal}, publisher = {Springer}, address = {Dordrecht}, issn = {1381-2890}, doi = {10.1007/s11218-023-09789-9}, pages = {35}, year = {2023}, abstract = {We tested whether a brief self-affirmation writing intervention protected against identity-threats (i.e., stereotyping and discrimination) for adolescents' school-related adjustment. The longitudinal study followed 639 adolescents in Germany (65\% of immigrant descent, 50\% female, M-age = 12.35 years, SDage = .69) from 7(th) grade (pre-intervention at T1, five to six months post-intervention at T2) to the end of 8(th) grade (one-year follow-up at T3). We tested for direct and moderated (by heritage group, discrimination, classroom cultural diversity climate) effects using regression and latent change models. The self-affirmation intervention did not promote grades or math competence. However, in the short-term and for adolescents of immigrant descent, the intervention prevented a downward trajectory in mastery reactions to academic challenges for those experiencing greater discrimination. Further, it protected against a decline in behavioral school engagement for those in positive classroom cultural diversity climates. In the long-term and for all adolescents, the intervention lessened an upward trajectory in disruptive behavior. Overall, the self-affirmation intervention benefited some aspects of school-related adjustment for adolescents of immigrant and non-immigrant descent. The intervention context is important, with classroom cultural diversity climate acting as a psychological affordance enhancing affirmation effects. Our study supports the ongoing call for theorizing and empirically testing student and context heterogeneity to better understand for whom and under which conditions this intervention may work.}, language = {en} } @misc{HortonKhanCahilletal.2020, author = {Horton, Benjamin P. and Khan, Nicole S. and Cahill, Niamh and Lee, Janice S. H. and Shaw, Timothy A. and Garner, Andra J. and Kemp, Andrew C. and Engelhart, Simon E. and Rahmstorf, Stefan}, title = {Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51678}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516788}, pages = {10}, year = {2020}, abstract = {Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit projections from members of the scientific community regarding future global mean sea-level (GMSL) rise, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (central 66\% probability) GMSL rise of 0.30-0.65 m by 2100, and 0.54-2.15 m by 2300, relative to 1986-2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63-1.32 m by 2100, and 1.67-5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42\% (original survey) and 45\% (current survey) that under the high-emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, which is considered to have an exceedance likelihood of 17\%. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet.}, language = {en} } @article{HortonKhanCahilletal.2020, author = {Horton, Benjamin P. and Khan, Nicole S. and Cahill, Niamh and Lee, Janice S. H. and Shaw, Timothy A. and Garner, Andra J. and Kemp, Andrew C. and Engelhart, Simon E. and Rahmstorf, Stefan}, title = {Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey}, series = {npj Climate and Atmospheric Science}, volume = {3}, journal = {npj Climate and Atmospheric Science}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2397-3722}, doi = {10.1038/s41612-020-0121-5}, pages = {1 -- 8}, year = {2020}, abstract = {Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit projections from members of the scientific community regarding future global mean sea-level (GMSL) rise, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (central 66\% probability) GMSL rise of 0.30-0.65 m by 2100, and 0.54-2.15 m by 2300, relative to 1986-2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63-1.32 m by 2100, and 1.67-5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42\% (original survey) and 45\% (current survey) that under the high-emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, which is considered to have an exceedance likelihood of 17\%. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet.}, language = {en} } @article{GanguliPaprotnyHasanetal.2020, author = {Ganguli, Poulomi and Paprotny, Dominik and Hasan, Mehedi and G{\"u}ntner, Andreas and Merz, Bruno}, title = {Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe}, series = {Earth's future}, volume = {8}, journal = {Earth's future}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken, NJ}, issn = {2328-4277}, doi = {10.1029/2020EF001752}, pages = {19}, year = {2020}, abstract = {Compound flooding in coastal regions, that is, the simultaneous or successive occurrence of high sea levels and high river flows, is expected to increase in a warmer world. To date, however, there is no robust evidence on projected changes in compound flooding for northwestern Europe. We combine projected storm surges and river floods with probabilistic, localized relative sea-level rise (SLR) scenarios to assess the future compound flood hazard over northwestern coastal Europe in the high (RCP8.5) emission scenario. We use high-resolution, dynamically downscaled regional climate models (RCM) to drive a storm surge model and a hydrological model, and analyze the joint occurrence of high coastal water levels and associated river peaks in a multivariate copula-based approach. The RCM-forced multimodel mean reasonably represents the observed spatial pattern of the dependence strength between annual maxima surge and peak river discharge, although substantial discrepancies exist between observed and simulated dependence strength. All models overestimate the dependence strength, possibly due to limitations in model parameterizations. This bias affects compound flood hazard estimates and requires further investigation. While our results suggest decreasing compound flood hazard over the majority of sites by 2050s (2040-2069) compared to the reference period (1985-2005), an increase in projected compound flood hazard is limited to around 34\% of the sites. Further, we show the substantial role of SLR, a driver of compound floods, which has frequently been neglected. Our findings highlight the need to be aware of the limitations of the current generation of Earth system models in simulating coastal compound floods.}, language = {en} } @article{KalkuhlSchwerhoffWaha2020, author = {Kalkuhl, Matthias and Schwerhoff, Gregor and Waha, Katharina}, title = {Land tenure, climate and risk management}, series = {Ecological economics}, volume = {171}, journal = {Ecological economics}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0921-8009}, doi = {10.1016/j.ecolecon.2019.106573}, pages = {16}, year = {2020}, abstract = {We analyze to what extent climate conditions affect the prevalence of sharecropping as a form of traditional land tenure. We investigate how sharecropping tenure is related to climate risk and how it interacts with fertilizer use and livestock ownership that both influence production risk. We first develop a stylized theoretical model to illustrate the role of climate for land tenure and production. Our empirical analysis is based on more than 9000 households with considerable heterogeneity in climate conditions across several African countries. We find that farmers in areas with low precipitation are more likely to be sharecroppers. We further find evidence for risk management interaction effects as sharecropping farmers are less likely to own livestock and more likely to use fertilizer. In economies where formal kinds of insurance are unavailable, sharecropping thus functions as a form of insurance and reduces the need for potentially costly risk management strategies.}, language = {en} } @article{Streck2021, author = {Streck, Charlotte}, title = {Strengthening the Paris Agreement by holding non-state actors accountable}, series = {Transnational environmental law}, volume = {10}, journal = {Transnational environmental law}, number = {3}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {2047-1025}, doi = {10.1017/S2047102521000091}, pages = {493 -- 515}, year = {2021}, abstract = {While the intergovernmental climate regime increasingly recognizes the role of non-state actors in achieving the goals of the Paris Agreement (PA), the normative linkages between the intergovernmental climate regime and the non-state dominated 'transnational partnership governance' remain vague and tentative. A formalized engagement of the intergovernmental climate regime with transnational partnerships can increase the effectiveness of partnerships in delivering on climate mitigation and adaptation, thereby complementing rather than replacing government action. The proposed active engagement with partnerships would include (i) collecting and analyzing information to develop and prioritize areas for transnational and partnership engagement; (ii) defining minimum criteria and procedural requirements to be listed on an enhanced Non-state Actor Zone for Climate Action platform; (iii) actively supporting strategic initiatives; (iv) facilitating market or non-market finance as part of Article 6 PA; and (v) evaluating the effectiveness of partnerships in the context of the enhanced transparency framework (Article 13 PA) and the global stocktake (Article 14 PA). The UNFCCC Secretariat could facilitate engagement and problem solving by actively orchestrating transnational partnerships. Constructing effective implementation partnerships, recording their mitigation and adaptation goals, and holding them accountable may help to move climate talks from rhetoric to action.}, language = {en} } @article{Buerger2018, author = {B{\"u}rger, Gerd}, title = {A counterexample to decomposing climate shifts and trends by weather types}, series = {International Journal of Climatology}, volume = {38}, journal = {International Journal of Climatology}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {0899-8418}, doi = {10.1002/joc.5519}, pages = {3732 -- 3735}, year = {2018}, abstract = {The literature contains a sizable number of publications where weather types are used to decompose climate shifts or trends into contributions of frequency and mean of those types. They are all based on the product rule, that is, a transformation of a product of sums into a sum of products, the latter providing the decomposition. While there is nothing to argue about the transformation itself, its interpretation as a climate shift or trend decomposition is bound to fail. While the case of a climate shift may be viewed as an incomplete description of a more complex behaviour, trend decomposition indeed produces bogus trends, as demonstrated by a synthetic counterexample with well-defined trends in type frequency and mean. Consequently, decompositions based on that transformation, be it for climate shifts or trends, must not be used.}, language = {en} } @techreport{LudolphŠedova2021, type = {Working Paper}, author = {Ludolph, Lars and Šedov{\´a}, Barbora}, title = {Global food prices, local weather and migration in Sub-Saharan Africa}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {26}, issn = {2628-653X}, doi = {10.25932/publishup-49494}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-494946}, pages = {53}, year = {2021}, abstract = {In this paper, we study the effect of exogenous global crop price changes on migration from agricultural and non-agricultural households in Sub-Saharan Africa. We show that, similar to the effect of positive local weather shocks, the effect of a locally-relevant global crop price increase on household out-migration depends on the initial household wealth. Higher international producer prices relax the budget constraint of poor agricultural households and facilitate migration. The order of magnitude of a standardized price effect is approx. one third of the standardized effect of a local weather shock. Unlike positive weather shocks, which mostly facilitate internal rural-urban migration, positive income shocks through rising producer prices only increase migration to neighboring African countries, likely due to the simultaneous decrease in real income in nearby urban areas. Finally, we show that while higher producer prices induce conflict, conflict does not play a role for the household decision to send a member as a labor migrant.}, language = {en} } @misc{PaulyHelleMiramontetal.2018, author = {Pauly, Maren and Helle, Gerhard and Miramont, C{\´e}cile and B{\"u}ntgen, Ulf and Treydte, Kerstin and Reinig, Frederick and Guibal, Fr{\´e}d{\´e}ric and Sivan, Olivier and Heinrich, Ingo and Riedel, Frank and Kromer, Bernd and Balanzategui, Daniel and Wacker, Lukas and Sookdeo, Adam Sookdeo and Brauer, Achim}, title = {Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1135}, issn = {1866-8372}, doi = {10.25932/publishup-45916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459169}, pages = {10}, year = {2018}, abstract = {Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front.}, language = {en} } @misc{LichtDupontNivetPullenetal.2016, author = {Licht, Alexis and Dupont-Nivet, Guillaume and Pullen, Alex and Kapp, Paul and Abels, Hemmo A. and Lai, Zulong and Guo, ZhaoJie and Abell, Jordan and Giesler, Dominique}, title = {Resilience of the Asian atmospheric circulation shown by paleogene dust provenance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1114}, issn = {1866-8372}, doi = {10.25932/publishup-43638}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436381}, pages = {8}, year = {2016}, abstract = {The onset of modern central Asian atmospheric circulation is traditionally linked to the interplay of surface uplift of the Mongolian and Tibetan-Himalayan orogens, retreat of the Paratethys sea from central Asia and Cenozoic global cooling. Although the role of these players has not yet been unravelled, the vast dust deposits of central China support the presence of arid conditions and modern atmospheric pathways for the last 25 million years (Myr). Here, we present provenance data from older (42-33 Myr) dust deposits, at a time when the Tibetan Plateau was less developed, the Paratethys sea still present in central Asia and atmospheric pCO(2) much higher. Our results show that dust sources and near-surface atmospheric circulation have changed little since at least 42 Myr. Our findings indicate that the locus of central Asian high pressures and concurrent aridity is a resilient feature only modulated by mountain building, global cooling and sea retreat.}, language = {en} }