@article{BergholzMayGiladietal.2017, author = {Bergholz, Kolja and May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Environmental heterogeneity drives fine-scale species assembly and functional diversity of annual plants in a semi-arid environment}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {24}, journal = {Perspectives in plant ecology, evolution and systematics}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2017.01.001}, pages = {138 -- 146}, year = {2017}, abstract = {Spatial environmental heterogeneity is considered a fundamental factor for the maintenance of plant species richness. However, it still remains unclear whether heterogeneity may also facilitate coexistence at fine grain sizes or whether other processes, like mass effects and source sink dynamics due to dispersal, control species composition and diversity at these scales. In this study, we used two complimentary analyses to identify the role of heterogeneity within 15 m x 15 m plots for the coexistence of species-rich annual communities in a semi-arid environment along a steep precipitation gradient. Specifically, we: (a) analyzed the effect of environmental heterogeneity on species, functional and phylogenetic diversity within microsites (alpha diversity, 0.06 m(2) and 1 m(2)), across microsites (beta diversity), and diversity at the entire plot (gamma diversity); (b) further we used two null models to detect non-random trait and phylogenetic patterns in order to infer assembly processes, i.e. whether co-occurring species tend to share similar traits (trait convergence) or dissimilar traits (trait divergence). In general, our results showed that heterogeneity had a positive effect on community diversity. Specifically, for alpha diversity, the effect was significant for functional diversity, and not significant for either species or phylogenetic diversities. For beta diversity, all three measures of community diversity (species, functional, and phylogenetic) increased significantly, as they also did for gamma diversity, where functional measures were again stronger than for species or phylogenetic measures. In addition, the null model approach consistently detected trait convergence, indicating that species with similar traits tended to co-occur and had high abundances in a given microsite. While null model analysis across the phylogeny partly supported these trait findings, showing phylogenetic underdispersion at the 1m(2) grain size, surprisingly when species abundances in microsites were analyzed they were more evenly distributed across the phylogenetic tress than expected (phylogenetic overdispersion). In conclusion, our results provide compelling support that environmental heterogeneity at a relatively fine scale is an important factor for species co-existence as it positively affects diversity as well as influences species assembly. Our study underlines the need for trait-based approaches conducted at fine grain sizes in order to better understand species coexistence and community assembly. (C) 2017 Elsevier GmbH. All rights reserved.}, language = {en} } @article{HeinzeSitteSchindhelmetal.2016, author = {Heinze, Johannes and Sitte, Mario and Schindhelm, Anne and Wright, J. and Joshi, Jasmin Radha}, title = {Plant-soil feedbacks: a comparative study on the relative importance of soil feedbacks in the greenhouse versus the field}, series = {Oecologia}, volume = {181}, journal = {Oecologia}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-016-3591-8}, pages = {559 -- 569}, year = {2016}, abstract = {Interactions between plants and soil microorganisms influence individual plant performance and thus plant-community composition. Most studies on such plant-soil feedbacks (PSFs) have been performed under controlled greenhouse conditions, whereas no study has directly compared PSFs under greenhouse and natural field conditions. We grew three grass species that differ in local abundance in grassland communities simultaneously in the greenhouse and field on field-collected soils either previously conditioned by these species or by the general grassland community. As soils in grasslands are typically conditioned by mixes of species through the patchy and heterogeneous plant species' distributions, we additionally compared the effects of species-specific versus non-specific species conditioning on PSFs in natural and greenhouse conditions. In almost all comparisons PSFs differed between the greenhouse and field. In the greenhouse, plant growth in species-specific and non-specific soils resulted in similar effects with neutral PSFs for the most abundant species and positive PSFs for the less abundant species. In contrast, in the field all grass species tested performed best in non-specific plots, whereas species-specific PSFs were neutral for the most abundant and varied for the less abundant species. This indicates a general beneficial effect of plant diversity on PSFs in the field. Controlled greenhouse conditions might provide valuable insights on the nominal effects of soils on plants. However, the PSFs observed in greenhouse conditions may not be the determining drivers in natural plant communities where their effects may be overwhelmed by the diversity of abiotic and biotic above- and belowground interactions in the field.}, language = {en} } @misc{WarrenSimberloffRicklefsetal.2015, author = {Warren, Ben H. and Simberloff, Daniel and Ricklefs, Robert E. and Aguilee, Robin and Condamine, Fabien L. and Gravel, Dominique and Morlon, Helene and Mouquet, Nicolas and Rosindell, James and Casquet, Juliane and Conti, Elena and Cornuault, Josselin and Maria Fernandez-Palacios, Jose and Hengl, Tomislav and Norder, Sietze J. and Rijsdijk, Kenneth F. and Sanmartin, Isabel and Strasberg, Dominique and Triantis, Kostas A. and Valente, Luis M. and Whittaker, Robert J. and Gillespie, Rosemary G. and Emerson, Brent C. and Thebaud, Christophe}, title = {Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12398}, pages = {200 -- 217}, year = {2015}, abstract = {The study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, An equilibrium theory of insular zoogeography', was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities. Here, building on such developments, we highlight prospects for research on islands to improve our understanding of the ecology and evolution of communities in general. Throughout, we emphasise how attributes of islands combine to provide unusual research opportunities, the implications of which stretch far beyond islands. Molecular tools and increasing data acquisition now permit re-assessment of some fundamental issues that interested MacArthur and Wilson. These include the formation of ecological networks, species abundance distributions, and the contribution of evolution to community assembly. We also extend our prospects to other fields of ecology and evolution - understanding ecosystem functioning, speciation and diversification - frequently employing assets of oceanic islands in inferring the geographic area within which evolution has occurred, and potential barriers to gene flow. Although island-based theory is continually being enriched, incorporating non-equilibrium dynamics is identified as a major challenge for the future.}, language = {en} } @misc{ValentePhillimoreEtienne2015, author = {Valente, Luis M. and Phillimore, Albert B. and Etienne, Rampal S.}, title = {Equilibrium and non-equilibrium dynamics simultaneously operate in the Gal{\´a}pagos islands}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93525}, pages = {9}, year = {2015}, abstract = {Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Gal{\´a}pagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Gal{\´a}pagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms.}, language = {en} } @article{ValentePhillimoreEtienne2015, author = {Valente, Luis M. and Phillimore, Albert B. and Etienne, Rampal S.}, title = {Equilibrium and non-equilibrium dynamics simultaneously operate in the Gal{\´a}pagos islands}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1461-0248}, doi = {10.1111/ele.12461}, pages = {844 -- 852}, year = {2015}, abstract = {Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Gal{\´a}pagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Gal{\´a}pagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms.}, language = {en} }